13C 2D-PASS spectra of two new cis-dioxo catecholatomolybdenum complexes (NH2CH2NH2CHCH2)2(H+)3[MovO 2(C6H4O2)2] and (NH2CH2CH2CH2NH2)2(H+)3[Mo(v)O2 (C2H2O2)2] have been obtained by solid-state nuclear magnetic resona...13C 2D-PASS spectra of two new cis-dioxo catecholatomolybdenum complexes (NH2CH2NH2CHCH2)2(H+)3[MovO 2(C6H4O2)2] and (NH2CH2CH2CH2NH2)2(H+)3[Mo(v)O2 (C2H2O2)2] have been obtained by solid-state nuclear magnetic resonance (NMR), in which the spinning sidebands were well-separated. The principal components of the 13C shielding tensors were extracted by theoretically fitting the intensities of 13C spinning sidebands. The effects of counter cations on 13C chemical shift isotropy and shielding tensor of cis-dioxo catecholatomolybdenum complex anion [Mo (v)O2(C6H4O2)2]3? were studied, comparing the 13C CSA of those carbon sites in complex anions with that of the counter cations. Based on the known structure of the molybdenum complex crystal, theoretical values of 13C shielding tensors were calculated by the ainitio GIAO method, in comparison with the experimental results.展开更多
文摘13C 2D-PASS spectra of two new cis-dioxo catecholatomolybdenum complexes (NH2CH2NH2CHCH2)2(H+)3[MovO 2(C6H4O2)2] and (NH2CH2CH2CH2NH2)2(H+)3[Mo(v)O2 (C2H2O2)2] have been obtained by solid-state nuclear magnetic resonance (NMR), in which the spinning sidebands were well-separated. The principal components of the 13C shielding tensors were extracted by theoretically fitting the intensities of 13C spinning sidebands. The effects of counter cations on 13C chemical shift isotropy and shielding tensor of cis-dioxo catecholatomolybdenum complex anion [Mo (v)O2(C6H4O2)2]3? were studied, comparing the 13C CSA of those carbon sites in complex anions with that of the counter cations. Based on the known structure of the molybdenum complex crystal, theoretical values of 13C shielding tensors were calculated by the ainitio GIAO method, in comparison with the experimental results.