Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Fie...Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Field emission scanning electronic microscope (FESEM), Fourier transform infrared spectroscopy (FFIR) and UV-3101PC spectrophotometer (UVPC), respectively. XRD and FESEM results showed that pure SmBO3 phase was obtained at 750 ℃, with an average original particle size of about 100 nm. FTIR showed that there were apparently concentrated absorbent peaks between 500 and 1400 cm^-1. Moreover, the reflectivity of the powders apparently decreased at the wavelength between 1.05 and 1.15 μm. Therefore, SmBO3 might be a kind of absorbent material for infrared laser.展开更多
Nano size nickel copper ferrite powders (NiCuFe204) and nickel copper zinc ferrite powders have been prepared by a citrate gel precursor method. The resulting powders were characterized by X-ray diffraction (XRD) ...Nano size nickel copper ferrite powders (NiCuFe204) and nickel copper zinc ferrite powders have been prepared by a citrate gel precursor method. The resulting powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that nickel copper ferrites and nickel copper zinc ferrites were also in the nanosaele. The NiCu ferrite powders showed extensive XRD fine broadening and sizes of crystals were calculated (from the XRD line broadening) as 26 run-44 run over the temperature range is 200-800℃. The NiCuZn ferrite powders showed XRD line broadening and sizes of of crystals were calculated 46-65 nm over 200-800℃.展开更多
Ni-Zn ferrite with a nominal composition of Ni1-xZnxFe2O4 (x = 0, 0.2, 0.6, 0.8, 0.9) are prepared by citrate gel method and characterized by X-ray diffraction. Magnetic properties of all samples are obtained by using...Ni-Zn ferrite with a nominal composition of Ni1-xZnxFe2O4 (x = 0, 0.2, 0.6, 0.8, 0.9) are prepared by citrate gel method and characterized by X-ray diffraction. Magnetic properties of all samples are obtained by using VSM (Vibrating Sample Magnetometer) in the range of 10 Koe. The saturation magnetization values of the samples are carried out from the B-H loop. The effect of composition on saturation magnetization and magnetic moment are studied in this paper. The results showed that Saturation magnetization and magnetic moment values increases gradually as Zn2+ composition increases, it reaches maximum value 70.28 emu/gm for (x = 0.6) and decreases further with increasing Zn2+ composition.展开更多
Ni-Zn ferrite with composition of Ni1-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0) were prepared by citrate gel method. The Dielectric Properties for all the samples were investigated at room temperature as a fun...Ni-Zn ferrite with composition of Ni1-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0) were prepared by citrate gel method. The Dielectric Properties for all the samples were investigated at room temperature as a function of frequency. The dielectric constant shows dispersion in the lower frequency region and remains almost constant at higher frequencies. The frequency dependence of dielectric loss tangent (tan δ) is found to be abnormal, giving a peak at certain frequency for mixed Ni-Zn ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric loss tangent.展开更多
A new process to synthesize polycrystalline samples of Sr14Cu24O41 was presented. Firstly, dry gel powder of Sr14Cu24O41 was synthesized by the citrates sol-gel method, using Sr(NO3)2, Cu(NO3)2, ethylene glycol an...A new process to synthesize polycrystalline samples of Sr14Cu24O41 was presented. Firstly, dry gel powder of Sr14Cu24O41 was synthesized by the citrates sol-gel method, using Sr(NO3)2, Cu(NO3)2, ethylene glycol and citrate acid as raw materials. Then, polycrystalline samples of Sr14Cu24O41 were prepared by solid-state reaction. Thermal Gravimetric and Differential Thermal Analysis(TG-DTA) showed that the temperature for solid-state reaction is at 942 ℃. The samples are identified to be single phase by X-ray Diffraction(XRD) and Scanning Electron Microscopy(SEM). The SEM pictures showed that the first-step particles were at even size of about 100 nm by this technique. The electronic transport measurements showed that the doping compound were semiconductor with a crossover temperature T in the Arrhenius plot of the resistivity versus temprature.展开更多
Co-Cr nano-ferrites, having the chemical formula CoCrxFe2-xO4 (where x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0), were synthesized by the Citrate-gel auto combustion method. Synthesized powders were sintered at 500°...Co-Cr nano-ferrites, having the chemical formula CoCrxFe2-xO4 (where x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0), were synthesized by the Citrate-gel auto combustion method. Synthesized powders were sintered at 500°C for 4 hours in an air and were characterized by XRD, SEM and EDS. XRD analysis showed cubic spinel structure of the ferrites and the crystallite sizes (D) were found in the range of 6 - 12 nm. The values of lattice parameter (a) decreased and X-ray density (dx) increased with the increase of Cr content. Scanning Electron Microscopic (SEM) studies revealed nano crystalline nature of the samples. An elemental composition of the samples was studied by Energy Dispersive Spectroscopy (EDS). The observed results can be explained on the basis of composition and crystal size.展开更多
Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ...Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ratios of citric acid (CA) to nickel at different temperatures and times were characterized by thermal analysis (TG/DTA), scanning electron microscopy (SEM), x-ray diffraction (XRD), and measurement of specific surface area (BET) with porosity analyses. The optimized processing conditions of calcination temperature 400℃ for 1 hour with the CA/Ni ratio of 1.2, were determined to produce the nanosized nickel oxide pow- ders with a high specific surface area of 181 m^2/g, nanometer particle sizes of 15-25 nm, micro-pore diameter distribution between 4-10 nm. The capacitance characteristics of the nanosized nickel oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) exhibiting both a double-layer capacitance and a faradaic pseudocapacitance. The nanosized nickel oxide electrode shows a high cyclic stability and is promising for high performance electrochemical capacitors.展开更多
By using inorganic salts as raw materials and citric acid as complexing agent, α-Zn 3(PO 4) 2 and Eu 3+ doped α-Zn 3(PO 4) 2 phosphor powders were prepared by a citrate-gel process. X-ray diffraction (XRD), T...By using inorganic salts as raw materials and citric acid as complexing agent, α-Zn 3(PO 4) 2 and Eu 3+ doped α-Zn 3(PO 4) 2 phosphor powders were prepared by a citrate-gel process. X-ray diffraction (XRD), TG-DTA, FT-IR and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 ℃ and pure α-Zn 3(PO 4) 2 phase is obtained at 800 ℃. And the results of XRD reveal that Eu 3+ exists as EuPO 4 in the powder. In the phosphor powders, the Eu 3+ shows its characteristic red-orange (592 nm, 5D 0- 7F 1) emission and has no quenching concentration.展开更多
Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios...Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET). The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m^2/g and nanometer particle sizes of 15-30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.展开更多
It has been introduced several ways for rising fuel burning rate. Using catalyzers is a common way to rising fuel burning rate. Cu-Chromite catalyzer used in solid fuels, as burning rate catalyzer in thermal decomposi...It has been introduced several ways for rising fuel burning rate. Using catalyzers is a common way to rising fuel burning rate. Cu-Chromite catalyzer used in solid fuels, as burning rate catalyzer in thermal decomposition of Ammonium Perchlorate and results were satisfying. This catalyzer is produced by several methods such as: ceramic, coprecipitating, sol-gel, vacuum depositioning, but this paper explains producing catalyzer by Citrate sol-gel. Thermal analysis is used for studying process also SEM, XRD, TEM, FTIR tests used for determination of particle sizes.展开更多
Al2-xYxW3O12 (x=0.2,0.5,0.8,1.0,1.2,1.5,1.7 and 2.0) powders were synthesized by citrate sol-gel process.The concentration of species in a citric solution for preparing Al2-xYxW3O12 powders was calculated.The powders ...Al2-xYxW3O12 (x=0.2,0.5,0.8,1.0,1.2,1.5,1.7 and 2.0) powders were synthesized by citrate sol-gel process.The concentration of species in a citric solution for preparing Al2-xYxW3O12 powders was calculated.The powders were characterized by differential thermal analysis(DTA),thermogravimetry(TG),X-ray diffractometry(XRD) and scanning electron microscopy(SEM),respectively.No solid solution of Al2-xYxW3O12 is formed with x values varying from 0 to 2.0.The maximum solid solubility of Y2O3 in Al2W3O12 and Al2O3 in Y2W3O12 is less than 0.5.Y2W3O12 easily absorbs water in air and forms a composition of Y2W3O12·3.2H2O,and Al2W3O12 forms Al2W3O12·0.17H2O in the same condition.展开更多
In the present work, the hybrid catalyst films of TiO2/CuO containing up to 10% in mol of copper were deposited onto glass surface. Precursor solutions were obtained by citrate precursor method. Films were porous and ...In the present work, the hybrid catalyst films of TiO2/CuO containing up to 10% in mol of copper were deposited onto glass surface. Precursor solutions were obtained by citrate precursor method. Films were porous and the average particle size was 20 nm determined by FEG-SEM analysis. The photocatalytic activities of these films were studied using Rhodamine B as a target compound in a fixed bed reactor developed in our laboratory and UV lamp. It was observed that the addition of copper to TiO2 increased significantly its photocatalytic activity during the oxidation of Rhodamine B. The degradation exceeded 90% within 48 hours of irradiation compared to 38% when pure TiO2 was used. Moreover, there was a reduction in the particles band gap energy when compared to that of pure TiO2. These results indicate that the TiO2/CuO films are promising catalysts for the development of fixed bed reactors to be used to treat effluents containing azo dyes.展开更多
To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vi...To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.展开更多
LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such...LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMnOand LiNiAlMnOfortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMnOshows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMnOsamples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNiAlMnOdelivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMnOand LiNiAlMnOdepict the high and low real polarization of 1562 and 1100 Ω.展开更多
Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, p...Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, photocathodic protection and photoelectrochemical properties of TiO2 thin films were investigated. It is indicated that the photoelectrical performance of the Zn?TiO2 films is enhanced with the addition of Zn element compared with the pure-TiO2 film and the largest decline by 897 mV in the electrode potential is achieved under 300 °C heat treatment. SEM?EDS analyses show that Zn element is unevenly distributed in Zn?TiO2 films; XRD patterns reveal that the grain size of Zn?TiO2 is smaller than that of pure-TiO2; FTIR results indicate that Zn - O bond forms on Zn?TiO2 surface. Ultraviolet visible absorption spectra prove that Zn?TiO2 shifts to visible light region.Mott?Shottky curves show that the flat-band potential of Zn?TiO2 is more negative and charge carrier density is bigger than that ofpure-TiO2, implying that under the synergy of the width of the space-charge layer, carrier density and flat-band potential, Zn?TiO2 with 300 °C heat treatment displays the best photocathodic protection performance.展开更多
Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol–gel method and in-situ hydrogen reduction.The tungsten particles in the Cu matrix were well-dispersed with an averag...Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol–gel method and in-situ hydrogen reduction.The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100–200 nm.The addition of nanosized W particles remarkably improves the mechanical properties,while the electrical conductivity did not substantially decrease.The Cu–W composite with 6 wt%W has the most comprehensive properties with an ultimate strength of 310 MPa,yield strength of 238 MPa,hardness of HV 108 and electrical conductivity of 90%IACS.The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.展开更多
CeO2 ultrafine powder was prepared by sol-gel method.XRD showed that samples were amorphous when calcination temperature was below 230℃,and single phase CeO2 ultrafine powders could be obtained above 250℃.It was fou...CeO2 ultrafine powder was prepared by sol-gel method.XRD showed that samples were amorphous when calcination temperature was below 230℃,and single phase CeO2 ultrafine powders could be obtained above 250℃.It was found that Ce(3+) and Ce(4+)coexisted in the dried gel,the content of Ce(3+)lowered gradually and that of Ce(4+)increased in samples when calcining temperature increased.Ce(3+)was converted to Ce(4+)completel at 250℃.展开更多
The rare earth complex Eu(TTA) 3 was successfully encapsulated into MCM 41 mesoporous molecular sieve by the addition of the complex into the sol gel mixture for the synthesis of MCM 41 mesoporous material under m...The rare earth complex Eu(TTA) 3 was successfully encapsulated into MCM 41 mesoporous molecular sieve by the addition of the complex into the sol gel mixture for the synthesis of MCM 41 mesoporous material under microwave radiation. The as synthesized MCM 41 hosted Eu(TTA) 3 mesophase was confirmed to possess hexagonally ordered mesostructure and a uniform crystal size of about 30 nm with XRD and HRTEM techniques. Moreover, the IR spectrum, photoluminescence effect and fluorescence lifetime of the Eu(TTA) 3/MCM 41 hybrid were also studied. An increase in Stokes' shift and no change in luminescence lifetime were observed to the resultant mesophase in comparison with Eu(TTA) 3 in ethanol solution.展开更多
Gadolinium gallium gamet (GGG) nanopowders doped with ytterbium ions (Yb:GGG) were synthesized with citric acid as a fuel via gel combustion method. The optimized conditions for preparing yb^3+:Gd3Ga5O12 nanopo...Gadolinium gallium gamet (GGG) nanopowders doped with ytterbium ions (Yb:GGG) were synthesized with citric acid as a fuel via gel combustion method. The optimized conditions for preparing yb^3+:Gd3Ga5O12 nanopowders were discussed. The heat behavior, structure and morphology of powders were analyzed with thermal analysis (TG-DTA), X-ray diffraction (XRD), infrared spectra OR) and transmission electron microscope (TEM). TG-DTA analysis revealed that the weight loss of the precursor occured below 800 ℃ and its crystallization temperature was 830.6℃. XRD and IR analysis showed that the precursor converted directly into pure GGG at a relatively lower temperature (900 ℃) without any other intermediate phase. The lattice constant was 1.2377 calculated by extrapolation method. TEM results indicated that the spherical powders showed good dispersity and had a relatively narrow size distribution with average particle size of approximately 40-50 ran, which was favorable for good sinterability of Yb:GGG laser ceramic.展开更多
基金supported by the 973 Research Project of China (6134502)
文摘Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Field emission scanning electronic microscope (FESEM), Fourier transform infrared spectroscopy (FFIR) and UV-3101PC spectrophotometer (UVPC), respectively. XRD and FESEM results showed that pure SmBO3 phase was obtained at 750 ℃, with an average original particle size of about 100 nm. FTIR showed that there were apparently concentrated absorbent peaks between 500 and 1400 cm^-1. Moreover, the reflectivity of the powders apparently decreased at the wavelength between 1.05 and 1.15 μm. Therefore, SmBO3 might be a kind of absorbent material for infrared laser.
文摘Nano size nickel copper ferrite powders (NiCuFe204) and nickel copper zinc ferrite powders have been prepared by a citrate gel precursor method. The resulting powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that nickel copper ferrites and nickel copper zinc ferrites were also in the nanosaele. The NiCu ferrite powders showed extensive XRD fine broadening and sizes of crystals were calculated (from the XRD line broadening) as 26 run-44 run over the temperature range is 200-800℃. The NiCuZn ferrite powders showed XRD line broadening and sizes of of crystals were calculated 46-65 nm over 200-800℃.
文摘Ni-Zn ferrite with a nominal composition of Ni1-xZnxFe2O4 (x = 0, 0.2, 0.6, 0.8, 0.9) are prepared by citrate gel method and characterized by X-ray diffraction. Magnetic properties of all samples are obtained by using VSM (Vibrating Sample Magnetometer) in the range of 10 Koe. The saturation magnetization values of the samples are carried out from the B-H loop. The effect of composition on saturation magnetization and magnetic moment are studied in this paper. The results showed that Saturation magnetization and magnetic moment values increases gradually as Zn2+ composition increases, it reaches maximum value 70.28 emu/gm for (x = 0.6) and decreases further with increasing Zn2+ composition.
文摘Ni-Zn ferrite with composition of Ni1-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0) were prepared by citrate gel method. The Dielectric Properties for all the samples were investigated at room temperature as a function of frequency. The dielectric constant shows dispersion in the lower frequency region and remains almost constant at higher frequencies. The frequency dependence of dielectric loss tangent (tan δ) is found to be abnormal, giving a peak at certain frequency for mixed Ni-Zn ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric loss tangent.
基金the National Natural Science Foundation of China(No.10474074)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(No.WUT 2004 M03)
文摘A new process to synthesize polycrystalline samples of Sr14Cu24O41 was presented. Firstly, dry gel powder of Sr14Cu24O41 was synthesized by the citrates sol-gel method, using Sr(NO3)2, Cu(NO3)2, ethylene glycol and citrate acid as raw materials. Then, polycrystalline samples of Sr14Cu24O41 were prepared by solid-state reaction. Thermal Gravimetric and Differential Thermal Analysis(TG-DTA) showed that the temperature for solid-state reaction is at 942 ℃. The samples are identified to be single phase by X-ray Diffraction(XRD) and Scanning Electron Microscopy(SEM). The SEM pictures showed that the first-step particles were at even size of about 100 nm by this technique. The electronic transport measurements showed that the doping compound were semiconductor with a crossover temperature T in the Arrhenius plot of the resistivity versus temprature.
文摘Co-Cr nano-ferrites, having the chemical formula CoCrxFe2-xO4 (where x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0), were synthesized by the Citrate-gel auto combustion method. Synthesized powders were sintered at 500°C for 4 hours in an air and were characterized by XRD, SEM and EDS. XRD analysis showed cubic spinel structure of the ferrites and the crystallite sizes (D) were found in the range of 6 - 12 nm. The values of lattice parameter (a) decreased and X-ray density (dx) increased with the increase of Cr content. Scanning Electron Microscopic (SEM) studies revealed nano crystalline nature of the samples. An elemental composition of the samples was studied by Energy Dispersive Spectroscopy (EDS). The observed results can be explained on the basis of composition and crystal size.
基金the National Natural Science Foundation of China(No.50134020)
文摘Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ratios of citric acid (CA) to nickel at different temperatures and times were characterized by thermal analysis (TG/DTA), scanning electron microscopy (SEM), x-ray diffraction (XRD), and measurement of specific surface area (BET) with porosity analyses. The optimized processing conditions of calcination temperature 400℃ for 1 hour with the CA/Ni ratio of 1.2, were determined to produce the nanosized nickel oxide pow- ders with a high specific surface area of 181 m^2/g, nanometer particle sizes of 15-25 nm, micro-pore diameter distribution between 4-10 nm. The capacitance characteristics of the nanosized nickel oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) exhibiting both a double-layer capacitance and a faradaic pseudocapacitance. The nanosized nickel oxide electrode shows a high cyclic stability and is promising for high performance electrochemical capacitors.
文摘By using inorganic salts as raw materials and citric acid as complexing agent, α-Zn 3(PO 4) 2 and Eu 3+ doped α-Zn 3(PO 4) 2 phosphor powders were prepared by a citrate-gel process. X-ray diffraction (XRD), TG-DTA, FT-IR and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 ℃ and pure α-Zn 3(PO 4) 2 phase is obtained at 800 ℃. And the results of XRD reveal that Eu 3+ exists as EuPO 4 in the powder. In the phosphor powders, the Eu 3+ shows its characteristic red-orange (592 nm, 5D 0- 7F 1) emission and has no quenching concentration.
基金This work was supported by the National Natural Science Foundation of China under Grant No.50134020.
文摘Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET). The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m^2/g and nanometer particle sizes of 15-30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.
文摘It has been introduced several ways for rising fuel burning rate. Using catalyzers is a common way to rising fuel burning rate. Cu-Chromite catalyzer used in solid fuels, as burning rate catalyzer in thermal decomposition of Ammonium Perchlorate and results were satisfying. This catalyzer is produced by several methods such as: ceramic, coprecipitating, sol-gel, vacuum depositioning, but this paper explains producing catalyzer by Citrate sol-gel. Thermal analysis is used for studying process also SEM, XRD, TEM, FTIR tests used for determination of particle sizes.
基金Project(0512002400) supported by the Fund for Distinguished Young Scholars of Henan Province,China
文摘Al2-xYxW3O12 (x=0.2,0.5,0.8,1.0,1.2,1.5,1.7 and 2.0) powders were synthesized by citrate sol-gel process.The concentration of species in a citric solution for preparing Al2-xYxW3O12 powders was calculated.The powders were characterized by differential thermal analysis(DTA),thermogravimetry(TG),X-ray diffractometry(XRD) and scanning electron microscopy(SEM),respectively.No solid solution of Al2-xYxW3O12 is formed with x values varying from 0 to 2.0.The maximum solid solubility of Y2O3 in Al2W3O12 and Al2O3 in Y2W3O12 is less than 0.5.Y2W3O12 easily absorbs water in air and forms a composition of Y2W3O12·3.2H2O,and Al2W3O12 forms Al2W3O12·0.17H2O in the same condition.
基金FAPESP,FAPEMIG,CAPES and CNPq for the financial support.
文摘In the present work, the hybrid catalyst films of TiO2/CuO containing up to 10% in mol of copper were deposited onto glass surface. Precursor solutions were obtained by citrate precursor method. Films were porous and the average particle size was 20 nm determined by FEG-SEM analysis. The photocatalytic activities of these films were studied using Rhodamine B as a target compound in a fixed bed reactor developed in our laboratory and UV lamp. It was observed that the addition of copper to TiO2 increased significantly its photocatalytic activity during the oxidation of Rhodamine B. The degradation exceeded 90% within 48 hours of irradiation compared to 38% when pure TiO2 was used. Moreover, there was a reduction in the particles band gap energy when compared to that of pure TiO2. These results indicate that the TiO2/CuO films are promising catalysts for the development of fixed bed reactors to be used to treat effluents containing azo dyes.
基金Projects (21207093,51004072) supported by the National Natural Science Foundation of China for YouthProject (LJQ2014023) supported by the Liaoning Excellent Talents in University,China+1 种基金Project (L20150178) supported by the General Scientific Research Projects Foundation of Liaoning Educational Committee,ChinaProject (N140303002) supported by the Fundamental Research Funds for the Central Universities,China
文摘To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.
基金support given under the "Brain Pool Program of the Korean Federation of Science and Technology Societies" (KOFST), Republic of South Koreasupported by the Human Resources Development Program (No. 20124010203270) of the Korea Institute of Energy Technology EvaluationPlanning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy
文摘LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMnOand LiNiAlMnOfortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMnOshows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMnOsamples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNiAlMnOdelivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMnOand LiNiAlMnOdepict the high and low real polarization of 1562 and 1100 Ω.
基金Project(cstc2011jj A50008)supported by the Natural Science Foundation of Chongqing,ChinaProject(14ZB0025)supported by Education Department of Sichuan Province,China
文摘Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, photocathodic protection and photoelectrochemical properties of TiO2 thin films were investigated. It is indicated that the photoelectrical performance of the Zn?TiO2 films is enhanced with the addition of Zn element compared with the pure-TiO2 film and the largest decline by 897 mV in the electrode potential is achieved under 300 °C heat treatment. SEM?EDS analyses show that Zn element is unevenly distributed in Zn?TiO2 films; XRD patterns reveal that the grain size of Zn?TiO2 is smaller than that of pure-TiO2; FTIR results indicate that Zn - O bond forms on Zn?TiO2 surface. Ultraviolet visible absorption spectra prove that Zn?TiO2 shifts to visible light region.Mott?Shottky curves show that the flat-band potential of Zn?TiO2 is more negative and charge carrier density is bigger than that ofpure-TiO2, implying that under the synergy of the width of the space-charge layer, carrier density and flat-band potential, Zn?TiO2 with 300 °C heat treatment displays the best photocathodic protection performance.
基金supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-029A2)State Key Lab of Advanced Metals and Materials of China (No. 2019-Z10)
文摘Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol–gel method and in-situ hydrogen reduction.The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100–200 nm.The addition of nanosized W particles remarkably improves the mechanical properties,while the electrical conductivity did not substantially decrease.The Cu–W composite with 6 wt%W has the most comprehensive properties with an ultimate strength of 310 MPa,yield strength of 238 MPa,hardness of HV 108 and electrical conductivity of 90%IACS.The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.
文摘CeO2 ultrafine powder was prepared by sol-gel method.XRD showed that samples were amorphous when calcination temperature was below 230℃,and single phase CeO2 ultrafine powders could be obtained above 250℃.It was found that Ce(3+) and Ce(4+)coexisted in the dried gel,the content of Ce(3+)lowered gradually and that of Ce(4+)increased in samples when calcining temperature increased.Ce(3+)was converted to Ce(4+)completel at 250℃.
文摘The rare earth complex Eu(TTA) 3 was successfully encapsulated into MCM 41 mesoporous molecular sieve by the addition of the complex into the sol gel mixture for the synthesis of MCM 41 mesoporous material under microwave radiation. The as synthesized MCM 41 hosted Eu(TTA) 3 mesophase was confirmed to possess hexagonally ordered mesostructure and a uniform crystal size of about 30 nm with XRD and HRTEM techniques. Moreover, the IR spectrum, photoluminescence effect and fluorescence lifetime of the Eu(TTA) 3/MCM 41 hybrid were also studied. An increase in Stokes' shift and no change in luminescence lifetime were observed to the resultant mesophase in comparison with Eu(TTA) 3 in ethanol solution.
基金supported by the Foundation of Ordnance Science Institute (42001070403)
文摘Gadolinium gallium gamet (GGG) nanopowders doped with ytterbium ions (Yb:GGG) were synthesized with citric acid as a fuel via gel combustion method. The optimized conditions for preparing yb^3+:Gd3Ga5O12 nanopowders were discussed. The heat behavior, structure and morphology of powders were analyzed with thermal analysis (TG-DTA), X-ray diffraction (XRD), infrared spectra OR) and transmission electron microscope (TEM). TG-DTA analysis revealed that the weight loss of the precursor occured below 800 ℃ and its crystallization temperature was 830.6℃. XRD and IR analysis showed that the precursor converted directly into pure GGG at a relatively lower temperature (900 ℃) without any other intermediate phase. The lattice constant was 1.2377 calculated by extrapolation method. TEM results indicated that the spherical powders showed good dispersity and had a relatively narrow size distribution with average particle size of approximately 40-50 ran, which was favorable for good sinterability of Yb:GGG laser ceramic.