This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is ...This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.展开更多
This study presents an estimation approach to non-life insurance claim counts relating to a specified time. The objective of this study is to estimate the parameters in non-life insurance claim counting process, inclu...This study presents an estimation approach to non-life insurance claim counts relating to a specified time. The objective of this study is to estimate the parameters in non-life insurance claim counting process, including the homogeneous Poisson process (HPP) and the non-homogeneous Poisson process (NHPP) with a bell-shaped intensity. We use the estimating function, the zero mean martingale (ZMM) as a procedure of parameter estimation in the insurance claim counting process. Then, Λ(t) , the compensator of is proposed for the number of claims in the time interval . We present situations through a simulation study of both processes on the time interval . Some examples of the situations in the simulation study are depicted by a sample path relating to its compensator Λ(t). In addition, an example of the claim counting process illustrates the result of the compensator estimate misspecification.展开更多
The aim of this study is to propose an estimation approach to non-life insurance claim counts related to the insurance claim counting process, including the non-homogeneous Poisson process (NHPP) with a bell-shaped in...The aim of this study is to propose an estimation approach to non-life insurance claim counts related to the insurance claim counting process, including the non-homogeneous Poisson process (NHPP) with a bell-shaped intensity and a beta-shaped intensity. The estimating function, such as the zero mean martingale (ZMM), is used as a procedure for parameter estimation of the insurance claim counting process, and the parameters of model claim intensity are estimated by the Bayesian method. Then,Λ(t), the compensator of N(t) is proposed for the number of claims in a time interval (0,t]. Given the process over the time interval (0,t]., the situations are presented through a simulation study and some examples of these situations are also depicted by a sample path relating N(t) to its compensatorΛ(t).展开更多
基金This work was supported in part by the National Natural Science Foundation of China (10071058, 70273029) the Ministry of Education of China.
文摘This article considers a risk model as in Yuen et al. (2002). Under this model the two claim number processes are correlated. Claim occurrence of both classes relate to Poisson and Erlang processes. The formulae is derived for the distribution of the surplus immediately before ruin, for the distribution of the surplus immediately after ruin and the joint distribution of the surplus immediately before and after ruin. The asymptotic property of these ruin functions is also investigated.
文摘This study presents an estimation approach to non-life insurance claim counts relating to a specified time. The objective of this study is to estimate the parameters in non-life insurance claim counting process, including the homogeneous Poisson process (HPP) and the non-homogeneous Poisson process (NHPP) with a bell-shaped intensity. We use the estimating function, the zero mean martingale (ZMM) as a procedure of parameter estimation in the insurance claim counting process. Then, Λ(t) , the compensator of is proposed for the number of claims in the time interval . We present situations through a simulation study of both processes on the time interval . Some examples of the situations in the simulation study are depicted by a sample path relating to its compensator Λ(t). In addition, an example of the claim counting process illustrates the result of the compensator estimate misspecification.
文摘The aim of this study is to propose an estimation approach to non-life insurance claim counts related to the insurance claim counting process, including the non-homogeneous Poisson process (NHPP) with a bell-shaped intensity and a beta-shaped intensity. The estimating function, such as the zero mean martingale (ZMM), is used as a procedure for parameter estimation of the insurance claim counting process, and the parameters of model claim intensity are estimated by the Bayesian method. Then,Λ(t), the compensator of N(t) is proposed for the number of claims in a time interval (0,t]. Given the process over the time interval (0,t]., the situations are presented through a simulation study and some examples of these situations are also depicted by a sample path relating N(t) to its compensatorΛ(t).