Soft reduction is known to be one of the best ways to improve the internal quality of slab castings such as center segregation, center porosity, centerline or triangular zone cracks, which is based on a proper adoptio...Soft reduction is known to be one of the best ways to improve the internal quality of slab castings such as center segregation, center porosity, centerline or triangular zone cracks, which is based on a proper adoption of the amount of reduction upon the given final solidification zone through roll gap adjustments. The synchronization of the clamping cylinders for roll gap adjustments should be very important to the application of soft reduction, including the synchronization of the clamping cylinders adjustments in the same and different segments. The synchronization of clamping cylinders adjustments is mainly affected by the adjustable accuracy of the four position-controlled clamping cylinders mounted in the upper frames of the segments according to a predetermined transformation relationship between the signals of displacement sensors and aimed roll gap, which, however, is also influenced by the installation accuracy, the precision of displacement sensors, the deformation of the segment frames and/or its bearing pedestals. Due to the actual asynchronous adjustments of the four clamping cylinders, the dynamic soft reduction operation is normally applied at non-ideal mechanical conditions. Here 7 possible situations of asynchronous adjustments of the local segments which may induce gap deviation have been presented. The roll gap deviation in the soft reduction region of a slab casting has been studied by a 3-D visco-elastic plastic FEM model, through which the additional inter-roll bulging, the related triangular cracks induced by one kind of the possible asynchronous adjustment situation and the effectiveness of soft reduction have been analyzed. A critical tolerance for the gap adjustments has been proposed for better contribution of soft reduction to the internal quality of slabs.展开更多
文摘Soft reduction is known to be one of the best ways to improve the internal quality of slab castings such as center segregation, center porosity, centerline or triangular zone cracks, which is based on a proper adoption of the amount of reduction upon the given final solidification zone through roll gap adjustments. The synchronization of the clamping cylinders for roll gap adjustments should be very important to the application of soft reduction, including the synchronization of the clamping cylinders adjustments in the same and different segments. The synchronization of clamping cylinders adjustments is mainly affected by the adjustable accuracy of the four position-controlled clamping cylinders mounted in the upper frames of the segments according to a predetermined transformation relationship between the signals of displacement sensors and aimed roll gap, which, however, is also influenced by the installation accuracy, the precision of displacement sensors, the deformation of the segment frames and/or its bearing pedestals. Due to the actual asynchronous adjustments of the four clamping cylinders, the dynamic soft reduction operation is normally applied at non-ideal mechanical conditions. Here 7 possible situations of asynchronous adjustments of the local segments which may induce gap deviation have been presented. The roll gap deviation in the soft reduction region of a slab casting has been studied by a 3-D visco-elastic plastic FEM model, through which the additional inter-roll bulging, the related triangular cracks induced by one kind of the possible asynchronous adjustment situation and the effectiveness of soft reduction have been analyzed. A critical tolerance for the gap adjustments has been proposed for better contribution of soft reduction to the internal quality of slabs.