The unifiedΩ-series of the Gauss and Bailey2F1(1/2)-sums will be investigated by utilizing asymptotic methods and the modified Abel lemma on summation by parts.Several remarkable transformation theorems for theΩ-ser...The unifiedΩ-series of the Gauss and Bailey2F1(1/2)-sums will be investigated by utilizing asymptotic methods and the modified Abel lemma on summation by parts.Several remarkable transformation theorems for theΩ-series will be proved whose particular cases turn out to be strange evaluations of nonterminating hypergeometric series and infinite series identities of Ramanujan-type,including a couple of beautiful expressions forπand the Catalan constant discovered by Guillera(2008).展开更多
The Abel's lemma on summation by parts is employed to evaluate terminating hypergeometric series. Several summation formulae are reviewed and some new identities are established.
文摘The unifiedΩ-series of the Gauss and Bailey2F1(1/2)-sums will be investigated by utilizing asymptotic methods and the modified Abel lemma on summation by parts.Several remarkable transformation theorems for theΩ-series will be proved whose particular cases turn out to be strange evaluations of nonterminating hypergeometric series and infinite series identities of Ramanujan-type,including a couple of beautiful expressions forπand the Catalan constant discovered by Guillera(2008).
基金Supported by Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘The Abel's lemma on summation by parts is employed to evaluate terminating hypergeometric series. Several summation formulae are reviewed and some new identities are established.