In 1937, Paul Dirac proposed Large Number Hypothesis and Hypothesis of Variable Gravitational Constant, and later added notion of Continuous Creation of Matter in the World. Hypersphere World-Universe Model (WUM) foll...In 1937, Paul Dirac proposed Large Number Hypothesis and Hypothesis of Variable Gravitational Constant, and later added notion of Continuous Creation of Matter in the World. Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics. WUM is proposed as an alternative to prevailing Big Bang Model (BBM) that relies on General Relativity. WUM and BBM are principally different Models: 1) Instead of Initial Singularity with infinite energy density and extremely rapid expansion of spacetime (Inflation) in BBM;in WUM, there was Fluctuation (4D Nucleus of World with extrapolated radius equal to basic size unit of a) in Eternal Universe with finite extrapolated energy density (~10<sup>4</sup> less than nuclear density) and finite expansion of Nucleus in Its fourth spatial dimension with speed c that is gravitodynamic constant;2) Instead of alleged practically Infinite Homogeneous and Isotropic Universe around Initial Singularity in BBM;in WUM, 3D Finite Boundless World (Hypersphere of 4D Nucleus) presents Patchwork Quilt of various Luminous Superclusters (≧10<sup>3</sup>), which emerged in different places of World at different Cosmological times. Medium of World, consisting of protons, electrons, photons, neutrinos, and dark matter particles, is Homogeneous and Isotropic. Distribution of Macroobjects is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium;2) Laniakea Supercluster with binding mass ~10<sup>17</sup>M<sub>⊙</sub> is home to Milky Way (MW) and ~10<sup>5</sup> other nearby galaxies, which did not start their movement from Initial Singularity;3) MW is gravitationally bounded with Virgo Supercluster (VS) and has Orbital Angular Momentum that far exceeds its rotational angular momentum;4) Mass-to-light ratio of VS is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters. These ratios are main arguments in favor of presence of significant amounts of Dark Matter in the World. 5) Astronomers discovered the most distant galaxy HD1 that is ~13.5 Bly away. WUM predicts discovery of galaxies with a distance of ~13.8 Bly. Medium of World, Dark Matter, and Angular Momentum are main Three Pillars of WUM.</sup></sup>展开更多
Schrfdinger's equation is one the equations that mark the beginnings of the systematic quantum physics. It was shown that it follows from the Dirac's equation and the relationship with classical physics, i.e. with c...Schrfdinger's equation is one the equations that mark the beginnings of the systematic quantum physics. It was shown that it follows from the Dirac's equation and the relationship with classical physics, i.e. with classical field theory was established. The subject of this work is the relationship between classical relativistic physics and the quantum physics. Investigation carded out in this work, shows that the free electromagnetic field, spinor Dirac's field without mass, spinor Dirac's field with mass, and some other fields are described by the same vibrational formulation. The conditions that a field be described by Maxwell's equations of motion are given in this work, and some solutions of these conditions are also given. Non-relativistic approximation of the equations of the non-quantified field are the Schrōdinger's equations. Dirac's equation as a special case, contains Maxwell's equations and the Schrōdinger's equation.展开更多
In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no p...In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no precise counterpart to the center-of-probability velocity of quantum mechanics, in spite of the fact that there exist in the literature at least eight different velocities for the electromagnetic wave. We propose a center-of-energy velocity to describe the entire motion of general wave packets in classical physical systems. It is a measurable quantity, and is well defined for both continuous and discrete systems. For electromagnetic wave packets it is a generalization of the velocity of energy transport. General wave packets in several classical systems are studied and the center-of-energy velocity is calculated and expressed in terms of the dispersion relation and the Fourier coefficients. These systems include string subject to an external force, monatomic chain and diatomic chain in one dimension, and classical Heisenberg model in one dimension. In most cases the center-of-energy velocity reduces to the group Velocity for quasi-monochromatic wave packets. Thus it also appears to be the generalization of the group velocity. Wave packets of the relativistic Dirac equation are discussed briefly.展开更多
The similarity between classical and quantum physics is large enough to make an investigation of quantization methods a worthwhile endeavour. As history has shown, Dirac's canonical quantization method works reaso...The similarity between classical and quantum physics is large enough to make an investigation of quantization methods a worthwhile endeavour. As history has shown, Dirac's canonical quantization method works reasonably well in the case of conventional quantum mechanics over R<sup>n</sup> but it may fail in non-trivial phase spaces and also suffer from ordering problems. Affine quantization is an alternative method, similar to the canonical quantization, that may offer a positive result in situations for which canonical quantization fails. In this paper we revisit the affine quantization method on the half-line. We formulate and solve some simple models, the free particle and the harmonic oscillator.展开更多
In this work, we show that by restricting to the subgroup of time-independent coordinate transformations, then it is possible to derive the Ricci flow from the Bianchi identities. To achieve this, we first show that t...In this work, we show that by restricting to the subgroup of time-independent coordinate transformations, then it is possible to derive the Ricci flow from the Bianchi identities. To achieve this, we first show that the field equations of the gravitational field, the Newton’s second law of classical dynamics, and the Maxwell field equations of the electromagnetic field all share the same mathematical structure. Consequently, the Ricci flow itself may be regarded as dynamical equations used to describe physical processes associated with the gravitational field, such as the process of smoothing out irregularities of distribution of matter in space.展开更多
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ...Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022.展开更多
We present in this paper an alternative of modeling physical systems through a non-Classical logic namely the Paraconsistent Logic (PL) whose main feature is the revocation of the principle of non-contradiction. The P...We present in this paper an alternative of modeling physical systems through a non-Classical logic namely the Paraconsistent Logic (PL) whose main feature is the revocation of the principle of non-contradiction. The Paraconsistent Annotated Logic with annotation of two values (PAL2v) is a type of PL and has in its theoretical structure the main feature of dealing with contradictions offering flexibility in drawing conclusions. Several works about applications of PAL2v have shown that such logic is able to provide us with an adequate treatment to uncertainties. Based on the foundations of the PAL2v we presented the ParaQuantum logic (PQL) with the goal of performing analysis of signals from information sources which model physical systems. The formalization of the concepts of the logics PQL, that it is represented in a Lattice, requires the considering of Paraquantum logical states ψ which are propagated through variations of the evidence Degrees μ and λ which come out from measurements performed in Observable Variables in the physical world. When we analyze the lattice of the PQL, we obtain equations which quantify values of physical quantities from where we obtain the effects of propagation of the Paraquantum logical states ψ. In this paper, we introduce the Paraquantum Factor of quantization hψ whose value is associated with a special logical state on the lattice which is identified with the Planck constant h. We conclude through these studies that the Paraquantum Logical Model based on the ParaQuantum logics PQL can link the several fields of the physical sciences by means of quantization of values. It is an innovative approach of formulating natural phenomena.展开更多
In this paper we use a non-classical logic called ParaQuantum Logic (PQL) which is based on the foundations of the Paraconsistent Annotated logic with annotation of two values (PAL2v). The formalizations of the PQL co...In this paper we use a non-classical logic called ParaQuantum Logic (PQL) which is based on the foundations of the Paraconsistent Annotated logic with annotation of two values (PAL2v). The formalizations of the PQL concepts, which is represented by a lattice with four vertices, leads us to consider Paraquantum logical states ψ which are propagated by means of variations of the evidence Degrees extracted from measurements performed on the Observable Variables of the physical world. In this work we introduce the Paraquantum Gamma Factor γPψ which is an expansion factor on the PQL lattice that act in the physical world and is correlated with the Paraquantum Factor of quantization hψ whose value is associated with a special logical state on the lattice which is identified with the Planck constant h. Our studies show that the behavior of the Paraquantum Gamma Factor γPψ, at the time of reading the evidence Degrees through measurements of the Observable Variables in the physical world, is identical to that one of the Lorentz Factor γ used in the relativity theory. In the final part of this paper we present results about studies of expansion and contraction of the Paraquantum Logical Model which correlate the factors γPψ, and γ. By applying these correlation factors, the lattice of the PQL suitable for the universe understudy can be contracted or expanded, allowing the quantization model to cover the several study fields of physics.展开更多
Paraquantum Logics (PQL) has its origins in the fundamental concepts of the Paraconsistent Annotated Logics (PAL) whose main feature is to be capable of treating contradictory information. Based on a class of logics c...Paraquantum Logics (PQL) has its origins in the fundamental concepts of the Paraconsistent Annotated Logics (PAL) whose main feature is to be capable of treating contradictory information. Based on a class of logics called Paraconsistent Logics with annotations of two values (PAL2v), PQL performs a logical treatment on signals obtained by measurements on physical quantities which are considered Observable Variables in the physical world. In the process of application of the PQL the obtained values are transformed in Evidence Degrees and represented on a Lattice of four Ver- tices where special equations transform these degrees into Paraquantum logical states ψ which propagate. The propagation of Paraquantum logical states provides us with results which can be interpreted and modeled through phenomena studied in physics. Using the paraquantum equations, we investigate the effects of balancing of Energies and the quantization and transience properties of the Paraquantum Logical Model in real Physical Systems. As a demonstration of the usage of the paraquantum equations we perform a numerical comparative study that applies the PQL to the Bohr’s model to find the energy levels of the Hydrogen atom. It is verified that the values of energy in each level of the Paraquantum logical model of the Hydrogen atom are close to the values found by the conventional way. The results through the Paraquantum Logic allow considering other important properties of the atom, as the forecast of number of electrons in each layer.展开更多
In this work we presented a study of the obtaining of the spectral line emissions of the hydrogen atom using equations that are originated from the foundations of the Paraquantum Logic (PQL). Based on a class of logic...In this work we presented a study of the obtaining of the spectral line emissions of the hydrogen atom using equations that are originated from the foundations of the Paraquantum Logic (PQL). Based on a class of logics called Paraconsistent Logics with annotation of two values (PAL2v), PQL performs a logical treatment on signals obtained by measurements on physical quantities which are considered Observable Variables in the physical world. In the process of application of the PQL the obtained values are transformed in Evidence Degrees and represented on a Lattice of four Vertices where special equations transform these degrees into Paraquantum logical states ψ which propagate. This allows creating Paraquantum logical models of physical systems of the real world. Using the paraquantum equations, we investigated the hydrogen atom spectrum and his main series known. We performed a numerical comparative study that applies the Paraquantum Logical Model to calculate the wavelengths values. The values of wavelengths obtained by the Paraquantum Equations are compared by the results found by the Rydberg formula and are verified that the series of the spectral line emissions of the hydrogen atom can be identified with the representative Lattices of the Paraquantum Logic. Through the application of the Paraquantum equations it was found a numeric value relates the layers of Paraquantum model of the Hydrogen atom. This value represents a constant that relates the Lattices that compose the Paraquantum universe, and it was denominated Paraquantum Structure Constant, whose symbol is αψ. The obtained results of the comparison demonstrate that the Paraquantum Logic comes with good possibilities of being the ideal logic to model our physical reality.展开更多
The studies of the PQL are based on propagation of Paraquantum logical states ψ in a representative Lattice of four vertices. Based in interpretations that consider resulting information of measurements in physical s...The studies of the PQL are based on propagation of Paraquantum logical states ψ in a representative Lattice of four vertices. Based in interpretations that consider resulting information of measurements in physical systems are found paraquantum equations for computation of the physical quantities in real physical systems. In the first part of this work we presented a study of Relativity theory which involved the time and the space with their characteristics as degrees of evidence applied in Paraquantum Logical Model. Now, in this second Part we present a study of application of the PQL in resolution of phenomena of physical systems that involve concepts of the Relativity Theory and the correlation of these effects with the Newtonian Universe and Quantum Mechanics. Considering physical fundamental quantities varying periodically in amplitude, we introduce the paraquantum equations which consider frequency in the analysis. From of these mathematical relationships obtained in the PQL Lattice some main physical constants related to the studies of De Broglie appeared. With the equations of Energy obtained through the analyses is demonstrated that the Paraquantum Logic is capable to correlate values and to unify the several study areas of the Physical Science.展开更多
Paraquantum Logic (P QL ) has its origins in the fundamental concepts of the Paraconsistent Annotated Logic (PAL) whose main feature is to be capable of treating contradictory information. In this work we presented a ...Paraquantum Logic (P QL ) has its origins in the fundamental concepts of the Paraconsistent Annotated Logic (PAL) whose main feature is to be capable of treating contradictory information. In this work we presented a study of application of the P QL in resolution of phenomena of physical systems that involves the interactions between physical bodies or particles. Initially is considered that each particle or physical body that is in the physical world has a representative Lattice in the Paraquantum world. From this consideration is made a study of the phenomena of Paraquantum Entanglement modeling the interaction between particles based in fundamental concepts of the Paraquantum Logic. The mathematical relationships of representative Lattices of the Paraquantum Logic originate models with values that are identified with some physical constants. In this work these paraquantum values are identified with the Universal constant of Gravity, proposed by Newton, and the constant K, that relates the Interaction Force in charged particles in the Coulomb’s Law. The results showed that the Paraquantum Logical Model elaborated starting from the fundamental concepts of the Paraquantum Logic (P QL ) is adequate to support theories based in a Paraquantum Universe built by an infinite amount of Lattices and forming a Paraquantum net of infinite dimensions.展开更多
From fundamental concepts of the Paraconsistent Annotated Logic with annotation of two values (PAL2v), whose main feature is to be capable of treating contradictory information, was created the Paraquantum Logic (PQL)...From fundamental concepts of the Paraconsistent Annotated Logic with annotation of two values (PAL2v), whose main feature is to be capable of treating contradictory information, was created the Paraquantum Logic (PQL). The studies of the PQL are based on propagation of Paraquantum logical states ψ in a representative Lattice of four vertices. Based in interpretations that consider resulting information of measurements in physical systems, are found two Paraquantum factors: the Paraquantum Gamma Factor γPΨ, that has his action in the measurements of Observable Variables in the Physical world and the Paraquantum Factor of quantization hΨ, which has his action in the Paraquantum World represented by the PQL Lattice. Correlation between γPΨ and hΨ produces paraquantum equations for computation of the physical quantities in real physical systems. In this work we present a study of application of the PQL in resolution of phenomena of physical systems that involve concepts of the Relativity Theory. Initially the time t is considered like an Observable Variable and the paraquantum analysis is done with the same conditions assumed in the relativity theory for the study of the time dilatation. After the time considerations, paraquantum equations are involved with the space-time and velocity creating conditions for a relativistic/paraquantum analysis. In the part II of this work a new approaches of the relativistic phenomena in the Paraquantum Logical Model will show the correlation of these effects with the Newtonian universe and with quantum mechanics.展开更多
In this paper, we present an equationing method based on non-classical logics applied to resolution of problems which involves phenomena of physical science. A non-classical logic denominated of the Paraquantum Logic ...In this paper, we present an equationing method based on non-classical logics applied to resolution of problems which involves phenomena of physical science. A non-classical logic denominated of the Paraquantum Logic (PQL), which is based on the fundamental concepts of the Paraconsistent Annotated logic with annotation of two values (PAL2v), is used. The formalizations of the PQL concepts, which are represented by a lattice with four vertices, lead us to consider Paraquantum logical states ψ which are propagated by means of variations of the evidence Degrees extracted from measurements performed on the Observable Variables of the physical world. The studies on the lattice of PQL give us equations that quantify values of physical largenesses from where we obtain the effects of the propagation of the Paraquantum logical states ψ. The PQL lattice with such features can be extensively studied and we obtain a Paraquantum Logical Model with the capacity of contraction or expansion which can represent any physical universe. In this paper the Paraquantum Logical Model is applied to the Newton Laws where we obtain equations and verify the action of an expansion factor the PQL lattice called Paraquantum Gamma Factor γPψ and its correlation with another important factor called Paraquantum Factor of quantization hψ. We present numerical examples applied to real physical systems through the equations which deal with paraquantum physical largenesses and how these values are transmitted to the physical world. With the results of these studies we can verify that the Paraquantum Logical Model has the property of interconnect several fields of the Physical Science.展开更多
文摘In 1937, Paul Dirac proposed Large Number Hypothesis and Hypothesis of Variable Gravitational Constant, and later added notion of Continuous Creation of Matter in the World. Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing different mechanism of Matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics. WUM is proposed as an alternative to prevailing Big Bang Model (BBM) that relies on General Relativity. WUM and BBM are principally different Models: 1) Instead of Initial Singularity with infinite energy density and extremely rapid expansion of spacetime (Inflation) in BBM;in WUM, there was Fluctuation (4D Nucleus of World with extrapolated radius equal to basic size unit of a) in Eternal Universe with finite extrapolated energy density (~10<sup>4</sup> less than nuclear density) and finite expansion of Nucleus in Its fourth spatial dimension with speed c that is gravitodynamic constant;2) Instead of alleged practically Infinite Homogeneous and Isotropic Universe around Initial Singularity in BBM;in WUM, 3D Finite Boundless World (Hypersphere of 4D Nucleus) presents Patchwork Quilt of various Luminous Superclusters (≧10<sup>3</sup>), which emerged in different places of World at different Cosmological times. Medium of World, consisting of protons, electrons, photons, neutrinos, and dark matter particles, is Homogeneous and Isotropic. Distribution of Macroobjects is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous. Most direct observational evidence of validity of WUM are: 1) Microwave Background Radiation and Intergalactic Plasma speak in favor of existence of Medium;2) Laniakea Supercluster with binding mass ~10<sup>17</sup>M<sub>⊙</sub> is home to Milky Way (MW) and ~10<sup>5</sup> other nearby galaxies, which did not start their movement from Initial Singularity;3) MW is gravitationally bounded with Virgo Supercluster (VS) and has Orbital Angular Momentum that far exceeds its rotational angular momentum;4) Mass-to-light ratio of VS is ~300 times larger than that of Solar ratio. Similar ratios are obtained for other superclusters. These ratios are main arguments in favor of presence of significant amounts of Dark Matter in the World. 5) Astronomers discovered the most distant galaxy HD1 that is ~13.5 Bly away. WUM predicts discovery of galaxies with a distance of ~13.8 Bly. Medium of World, Dark Matter, and Angular Momentum are main Three Pillars of WUM.</sup></sup>
文摘Schrfdinger's equation is one the equations that mark the beginnings of the systematic quantum physics. It was shown that it follows from the Dirac's equation and the relationship with classical physics, i.e. with classical field theory was established. The subject of this work is the relationship between classical relativistic physics and the quantum physics. Investigation carded out in this work, shows that the free electromagnetic field, spinor Dirac's field without mass, spinor Dirac's field with mass, and some other fields are described by the same vibrational formulation. The conditions that a field be described by Maxwell's equations of motion are given in this work, and some solutions of these conditions are also given. Non-relativistic approximation of the equations of the non-quantified field are the Schrōdinger's equations. Dirac's equation as a special case, contains Maxwell's equations and the Schrōdinger's equation.
基金The project supported by National Natural Science Foundation of China under Grant No. 10275098The author is grateful to professor Nai-Ben Huang for useful discussions.
文摘In quantum mechanics the center of a wave packet is precisely defined as the center of probability. The center-of-probability velocity describes the entire motion of the wave packet. In classical physics there is no precise counterpart to the center-of-probability velocity of quantum mechanics, in spite of the fact that there exist in the literature at least eight different velocities for the electromagnetic wave. We propose a center-of-energy velocity to describe the entire motion of general wave packets in classical physical systems. It is a measurable quantity, and is well defined for both continuous and discrete systems. For electromagnetic wave packets it is a generalization of the velocity of energy transport. General wave packets in several classical systems are studied and the center-of-energy velocity is calculated and expressed in terms of the dispersion relation and the Fourier coefficients. These systems include string subject to an external force, monatomic chain and diatomic chain in one dimension, and classical Heisenberg model in one dimension. In most cases the center-of-energy velocity reduces to the group Velocity for quasi-monochromatic wave packets. Thus it also appears to be the generalization of the group velocity. Wave packets of the relativistic Dirac equation are discussed briefly.
文摘The similarity between classical and quantum physics is large enough to make an investigation of quantization methods a worthwhile endeavour. As history has shown, Dirac's canonical quantization method works reasonably well in the case of conventional quantum mechanics over R<sup>n</sup> but it may fail in non-trivial phase spaces and also suffer from ordering problems. Affine quantization is an alternative method, similar to the canonical quantization, that may offer a positive result in situations for which canonical quantization fails. In this paper we revisit the affine quantization method on the half-line. We formulate and solve some simple models, the free particle and the harmonic oscillator.
文摘In this work, we show that by restricting to the subgroup of time-independent coordinate transformations, then it is possible to derive the Ricci flow from the Bianchi identities. To achieve this, we first show that the field equations of the gravitational field, the Newton’s second law of classical dynamics, and the Maxwell field equations of the electromagnetic field all share the same mathematical structure. Consequently, the Ricci flow itself may be regarded as dynamical equations used to describe physical processes associated with the gravitational field, such as the process of smoothing out irregularities of distribution of matter in space.
文摘Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022.
文摘We present in this paper an alternative of modeling physical systems through a non-Classical logic namely the Paraconsistent Logic (PL) whose main feature is the revocation of the principle of non-contradiction. The Paraconsistent Annotated Logic with annotation of two values (PAL2v) is a type of PL and has in its theoretical structure the main feature of dealing with contradictions offering flexibility in drawing conclusions. Several works about applications of PAL2v have shown that such logic is able to provide us with an adequate treatment to uncertainties. Based on the foundations of the PAL2v we presented the ParaQuantum logic (PQL) with the goal of performing analysis of signals from information sources which model physical systems. The formalization of the concepts of the logics PQL, that it is represented in a Lattice, requires the considering of Paraquantum logical states ψ which are propagated through variations of the evidence Degrees μ and λ which come out from measurements performed in Observable Variables in the physical world. When we analyze the lattice of the PQL, we obtain equations which quantify values of physical quantities from where we obtain the effects of propagation of the Paraquantum logical states ψ. In this paper, we introduce the Paraquantum Factor of quantization hψ whose value is associated with a special logical state on the lattice which is identified with the Planck constant h. We conclude through these studies that the Paraquantum Logical Model based on the ParaQuantum logics PQL can link the several fields of the physical sciences by means of quantization of values. It is an innovative approach of formulating natural phenomena.
文摘In this paper we use a non-classical logic called ParaQuantum Logic (PQL) which is based on the foundations of the Paraconsistent Annotated logic with annotation of two values (PAL2v). The formalizations of the PQL concepts, which is represented by a lattice with four vertices, leads us to consider Paraquantum logical states ψ which are propagated by means of variations of the evidence Degrees extracted from measurements performed on the Observable Variables of the physical world. In this work we introduce the Paraquantum Gamma Factor γPψ which is an expansion factor on the PQL lattice that act in the physical world and is correlated with the Paraquantum Factor of quantization hψ whose value is associated with a special logical state on the lattice which is identified with the Planck constant h. Our studies show that the behavior of the Paraquantum Gamma Factor γPψ, at the time of reading the evidence Degrees through measurements of the Observable Variables in the physical world, is identical to that one of the Lorentz Factor γ used in the relativity theory. In the final part of this paper we present results about studies of expansion and contraction of the Paraquantum Logical Model which correlate the factors γPψ, and γ. By applying these correlation factors, the lattice of the PQL suitable for the universe understudy can be contracted or expanded, allowing the quantization model to cover the several study fields of physics.
文摘Paraquantum Logics (PQL) has its origins in the fundamental concepts of the Paraconsistent Annotated Logics (PAL) whose main feature is to be capable of treating contradictory information. Based on a class of logics called Paraconsistent Logics with annotations of two values (PAL2v), PQL performs a logical treatment on signals obtained by measurements on physical quantities which are considered Observable Variables in the physical world. In the process of application of the PQL the obtained values are transformed in Evidence Degrees and represented on a Lattice of four Ver- tices where special equations transform these degrees into Paraquantum logical states ψ which propagate. The propagation of Paraquantum logical states provides us with results which can be interpreted and modeled through phenomena studied in physics. Using the paraquantum equations, we investigate the effects of balancing of Energies and the quantization and transience properties of the Paraquantum Logical Model in real Physical Systems. As a demonstration of the usage of the paraquantum equations we perform a numerical comparative study that applies the PQL to the Bohr’s model to find the energy levels of the Hydrogen atom. It is verified that the values of energy in each level of the Paraquantum logical model of the Hydrogen atom are close to the values found by the conventional way. The results through the Paraquantum Logic allow considering other important properties of the atom, as the forecast of number of electrons in each layer.
文摘In this work we presented a study of the obtaining of the spectral line emissions of the hydrogen atom using equations that are originated from the foundations of the Paraquantum Logic (PQL). Based on a class of logics called Paraconsistent Logics with annotation of two values (PAL2v), PQL performs a logical treatment on signals obtained by measurements on physical quantities which are considered Observable Variables in the physical world. In the process of application of the PQL the obtained values are transformed in Evidence Degrees and represented on a Lattice of four Vertices where special equations transform these degrees into Paraquantum logical states ψ which propagate. This allows creating Paraquantum logical models of physical systems of the real world. Using the paraquantum equations, we investigated the hydrogen atom spectrum and his main series known. We performed a numerical comparative study that applies the Paraquantum Logical Model to calculate the wavelengths values. The values of wavelengths obtained by the Paraquantum Equations are compared by the results found by the Rydberg formula and are verified that the series of the spectral line emissions of the hydrogen atom can be identified with the representative Lattices of the Paraquantum Logic. Through the application of the Paraquantum equations it was found a numeric value relates the layers of Paraquantum model of the Hydrogen atom. This value represents a constant that relates the Lattices that compose the Paraquantum universe, and it was denominated Paraquantum Structure Constant, whose symbol is αψ. The obtained results of the comparison demonstrate that the Paraquantum Logic comes with good possibilities of being the ideal logic to model our physical reality.
文摘The studies of the PQL are based on propagation of Paraquantum logical states ψ in a representative Lattice of four vertices. Based in interpretations that consider resulting information of measurements in physical systems are found paraquantum equations for computation of the physical quantities in real physical systems. In the first part of this work we presented a study of Relativity theory which involved the time and the space with their characteristics as degrees of evidence applied in Paraquantum Logical Model. Now, in this second Part we present a study of application of the PQL in resolution of phenomena of physical systems that involve concepts of the Relativity Theory and the correlation of these effects with the Newtonian Universe and Quantum Mechanics. Considering physical fundamental quantities varying periodically in amplitude, we introduce the paraquantum equations which consider frequency in the analysis. From of these mathematical relationships obtained in the PQL Lattice some main physical constants related to the studies of De Broglie appeared. With the equations of Energy obtained through the analyses is demonstrated that the Paraquantum Logic is capable to correlate values and to unify the several study areas of the Physical Science.
文摘Paraquantum Logic (P QL ) has its origins in the fundamental concepts of the Paraconsistent Annotated Logic (PAL) whose main feature is to be capable of treating contradictory information. In this work we presented a study of application of the P QL in resolution of phenomena of physical systems that involves the interactions between physical bodies or particles. Initially is considered that each particle or physical body that is in the physical world has a representative Lattice in the Paraquantum world. From this consideration is made a study of the phenomena of Paraquantum Entanglement modeling the interaction between particles based in fundamental concepts of the Paraquantum Logic. The mathematical relationships of representative Lattices of the Paraquantum Logic originate models with values that are identified with some physical constants. In this work these paraquantum values are identified with the Universal constant of Gravity, proposed by Newton, and the constant K, that relates the Interaction Force in charged particles in the Coulomb’s Law. The results showed that the Paraquantum Logical Model elaborated starting from the fundamental concepts of the Paraquantum Logic (P QL ) is adequate to support theories based in a Paraquantum Universe built by an infinite amount of Lattices and forming a Paraquantum net of infinite dimensions.
文摘From fundamental concepts of the Paraconsistent Annotated Logic with annotation of two values (PAL2v), whose main feature is to be capable of treating contradictory information, was created the Paraquantum Logic (PQL). The studies of the PQL are based on propagation of Paraquantum logical states ψ in a representative Lattice of four vertices. Based in interpretations that consider resulting information of measurements in physical systems, are found two Paraquantum factors: the Paraquantum Gamma Factor γPΨ, that has his action in the measurements of Observable Variables in the Physical world and the Paraquantum Factor of quantization hΨ, which has his action in the Paraquantum World represented by the PQL Lattice. Correlation between γPΨ and hΨ produces paraquantum equations for computation of the physical quantities in real physical systems. In this work we present a study of application of the PQL in resolution of phenomena of physical systems that involve concepts of the Relativity Theory. Initially the time t is considered like an Observable Variable and the paraquantum analysis is done with the same conditions assumed in the relativity theory for the study of the time dilatation. After the time considerations, paraquantum equations are involved with the space-time and velocity creating conditions for a relativistic/paraquantum analysis. In the part II of this work a new approaches of the relativistic phenomena in the Paraquantum Logical Model will show the correlation of these effects with the Newtonian universe and with quantum mechanics.
文摘In this paper, we present an equationing method based on non-classical logics applied to resolution of problems which involves phenomena of physical science. A non-classical logic denominated of the Paraquantum Logic (PQL), which is based on the fundamental concepts of the Paraconsistent Annotated logic with annotation of two values (PAL2v), is used. The formalizations of the PQL concepts, which are represented by a lattice with four vertices, lead us to consider Paraquantum logical states ψ which are propagated by means of variations of the evidence Degrees extracted from measurements performed on the Observable Variables of the physical world. The studies on the lattice of PQL give us equations that quantify values of physical largenesses from where we obtain the effects of the propagation of the Paraquantum logical states ψ. The PQL lattice with such features can be extensively studied and we obtain a Paraquantum Logical Model with the capacity of contraction or expansion which can represent any physical universe. In this paper the Paraquantum Logical Model is applied to the Newton Laws where we obtain equations and verify the action of an expansion factor the PQL lattice called Paraquantum Gamma Factor γPψ and its correlation with another important factor called Paraquantum Factor of quantization hψ. We present numerical examples applied to real physical systems through the equations which deal with paraquantum physical largenesses and how these values are transmitted to the physical world. With the results of these studies we can verify that the Paraquantum Logical Model has the property of interconnect several fields of the Physical Science.