期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
1
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
下载PDF
Method for the classification of tea diseases via weighted sampling and hierarchical classification learning
2
作者 Rujia Li Weibo Qin +5 位作者 Yiting He Yadong Li Rongbiao Ji Yehui Wu Jiaojiao Chen Jianping Yang 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第3期211-221,共11页
This study proposed a weighted sampling hierarchical classification learning method based on an efficient backbone network model to address the problems of high costs,low accuracy,and time-consuming traditional tea di... This study proposed a weighted sampling hierarchical classification learning method based on an efficient backbone network model to address the problems of high costs,low accuracy,and time-consuming traditional tea disease recognition methods.This method enhances the feature extraction ability by conducting hierarchical classification learning based on the EfficientNet model,effectively alleviating the impact of high similarity between tea diseases on the model’s classification performance.To better solve the problem of few and unevenly distributed tea disease samples,this study introduced a weighted sampling scheme to optimize data processing,which not only alleviates the overfitting effect caused by too few sample data but also balances the probability of extracting imbalanced classification data.The experimental results show that the proposed method was significant in identifying both healthy tea leaves and four common leaf diseases of tea(tea algal spot disease,tea white spot disease,tea anthracnose disease,and tea leaf blight disease).After applying the“weighted sampling hierarchical classification learning method”to train 7 different efficient backbone networks,most of their accuracies have improved.The EfficientNet-B1 model proposed in this study achieved an accuracy rate of 99.21%after adopting this learning method,which is higher than EfficientNet-b2(98.82%)and MobileNet-V3(98.43%).In addition,to better apply the results of identifying tea diseases,this study developed a mini-program that operates on WeChat.Users can quickly obtain accurate identification results and corresponding disease descriptions and prevention methods through simple operations.This intelligent tool for identifying tea diseases can serve as an auxiliary tool for farmers,consumers,and related scientific researchers and has certain practical value. 展开更多
关键词 tea diseases hierarchical classification learning weighted sampling classification method EfficientNet miniprogram
原文传递
LEARNING ALGORITHM OF FEEDFORWARD NEURAL NETWORK WITH HARD LIMITER USED FOR CLASSIFICATION
3
作者 张兆宁 孙雅明 毛鹏 《Transactions of Tianjin University》 EI CAS 1999年第2期14-18,共5页
A learning algorithm based on a hard limiter for feedforward neural networks (NN) is presented,and is applied in solving classification problems on separable convex sets and disjoint sets.It has been proved that the a... A learning algorithm based on a hard limiter for feedforward neural networks (NN) is presented,and is applied in solving classification problems on separable convex sets and disjoint sets.It has been proved that the algorithm has stronger classification ability than that of the back propagation (BP) algorithm for the feedforward NN using sigmoid function by simulation.What is more,the models can be implemented with lower cost hardware than that of the BP NN.LEARNIN 展开更多
关键词 hard limiter separable convex sets HYPERPLANE feedforward NN classification learning algorithm
下载PDF
Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network 被引量:1
4
作者 Dequan Guo Qiao Yang +2 位作者 Yu-Dong Zhang Tao Jiang Hanbing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期599-620,共22页
The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions.This matter arouses people’s attention.Traditional artificial waste classification is su... The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions.This matter arouses people’s attention.Traditional artificial waste classification is subjective and cannot be put accurately;moreover,the working environment of sorting is poor and the efficiency is low.Therefore,automated and effective sorting is needed.In view of the current development of deep learning,it can provide a good auxiliary role for classification and realize automatic classification.In this paper,the ResNet-50 convolutional neural network based on the transfer learning method is applied to design the image classifier to obtain the domestic refuse classification with high accuracy.By comparing the method designed in this paper with back propagation neural network and convolutional neural network,it is concluded that the CNN based on transfer learning method applied in this paper with higher accuracy rate and lower false detection rate.Further,under the shortage situation of data samples,the method with transfer learning and ResNet-50 training model is effective to improve the accuracy of image classification. 展开更多
关键词 Domestic refuse image classification deep learning transfer learning convolutional neural network
下载PDF
Epilepsy Radiology Reports Classification Using Deep Learning Networks
5
作者 Sengul Bayrak Eylem Yucel Hidayet Takci 《Computers, Materials & Continua》 SCIE EI 2022年第2期3589-3607,共19页
The automatic and accurate classification of Magnetic Resonance Imaging(MRI)radiology report is essential for the analysis and interpretation epilepsy and non-epilepsy.Since the majority of MRI radiology reports are u... The automatic and accurate classification of Magnetic Resonance Imaging(MRI)radiology report is essential for the analysis and interpretation epilepsy and non-epilepsy.Since the majority of MRI radiology reports are unstructured,the manual information extraction is time-consuming and requires specific expertise.In this paper,a comprehensive method is proposed to classify epilepsy and non-epilepsy real brain MRI radiology text reports automatically.This method combines the Natural Language Processing technique and statisticalMachine Learning methods.122 realMRI radiology text reports(97 epilepsy,25 non-epilepsy)are studied by our proposed method which consists of the following steps:(i)for a given text report our systems first cleans HTML/XML tags,tokenize,erase punctuation,normalize text,(ii)then it converts into MRI text reports numeric sequences by using indexbased word encoding,(iii)then we applied the deep learning models that are uni-directional long short-term memory(LSTM)network,bidirectional long short-term memory(BiLSTM)network and convolutional neural network(CNN)for the classifying comparison of the data,(iv)finally,we used 70%of used for training,15%for validation,and 15%for test observations.Unlike previous methods,this study encompasses the following objectives:(a)to extract significant text features from radiologic reports of epilepsy disease;(b)to ensure successful classifying accuracy performance to enhance epilepsy data attributes.Therefore,our study is a comprehensive comparative study with the epilepsy dataset obtained from numeric sequences by using index-based word encoding method applied for the deep learning models.The traditionalmethod is numeric sequences by using index-based word encoding which has been made for the first time in the literature,is successful feature descriptor in the epilepsy data set.The BiLSTM network has shown a promising performance regarding the accuracy rates.We show that the larger sizedmedical text reports can be analyzed by our proposed method. 展开更多
关键词 EPILEPSY radiology text report analysis natural language processing feature engineering index-based word encoding deep learning networks-based text classification
下载PDF
A classification-based privacy-preserving decision-making for secure data sharing in Internet of Things assisted applications 被引量:1
6
作者 Alaa Omran Almagrabi A.K.Bashir 《Digital Communications and Networks》 SCIE CSCD 2022年第4期436-445,共10页
The introduction of the Internet of Things(IoT)paradigm serves as pervasive resource access and sharing platform for different real-time applications.Decentralized resource availability,access,and allocation provide a... The introduction of the Internet of Things(IoT)paradigm serves as pervasive resource access and sharing platform for different real-time applications.Decentralized resource availability,access,and allocation provide a better quality of user experience regardless of the application type and scenario.However,privacy remains an open issue in this ubiquitous sharing platform due to massive and replicated data availability.In this paper,privacy-preserving decision-making for the data-sharing scheme is introduced.This scheme is responsible for improving the security in data sharing without the impact of replicated resources on communicating users.In this scheme,classification learning is used for identifying replicas and accessing granted resources independently.Based on the trust score of the available resources,this classification is recurrently performed to improve the reliability of information sharing.The user-level decisions for information sharing and access are made using the classification of the resources at the time of availability.This proposed scheme is verified using the metrics access delay,success ratio,computation complexity,and sharing loss. 展开更多
关键词 classification learning Data mining IoT PRIVACY-PRESERVING Resource replication
下载PDF
Adaptive Marine Predator Optimization Algorithm(AOMA)-Deep Supervised Learning Classification(DSLC)based IDS framework for MANET security
7
作者 M.Sahaya Sheela A.Gnana Soundari +4 位作者 Aditya Mudigonda C.Kalpana K.Suresh K.Somasundaram Yousef Farhaoui 《Intelligent and Converged Networks》 EI 2024年第1期1-18,共18页
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks today.In MANET,the Intrusion Detection System(IDS)is crucial because it a... Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks today.In MANET,the Intrusion Detection System(IDS)is crucial because it aids in the identification and detection of malicious attacks that impair the network’s regular operation.Different machine learning and deep learning methodologies are used for this purpose in the conventional works to ensure increased security of MANET.However,it still has significant flaws,including increased algorithmic complexity,lower system performance,and a higher rate of misclassification.Therefore,the goal of this paper is to create an intelligent IDS framework for significantly enhancing MANET security through the use of deep learning models.Here,the min-max normalization model is applied to preprocess the given cyber-attack datasets for normalizing the attributes or fields,which increases the overall intrusion detection performance of classifier.Then,a novel Adaptive Marine Predator Optimization Algorithm(AOMA)is implemented to choose the optimal features for improving the speed and intrusion detection performance of classifier.Moreover,the Deep Supervise Learning Classification(DSLC)mechanism is utilized to predict and categorize the type of intrusion based on proper learning and training operations.During evaluation,the performance and results of the proposed AOMA-DSLC based IDS methodology is validated and compared using various performance measures and benchmarking datasets. 展开更多
关键词 Intrusion Detection System(IDS) Security Mobile Ad-hoc Network(MANET) min-max normalization Adaptive Marine Predator Optimization Algorithm(AOMA) Deep Supervise learning classification(DSLC)
原文传递
The Study of Language Learning Strategies of Non-English Majors 被引量:1
8
作者 Cong Zhang 《Sino-US English Teaching》 2005年第5期36-41,共6页
This paper, from the educational and psychological point of view, explores EFL college students' language learning strategies in the Chinese context. The subjects under study involve 106 non-English majors from Hohai... This paper, from the educational and psychological point of view, explores EFL college students' language learning strategies in the Chinese context. The subjects under study involve 106 non-English majors from Hohai University at its Changzhou Campus. The approach is used for the research through two questionnaires to investigate the learners' language learning strategies. In the study, it is found that students use compensation strategies most frequently, while metacognitive strategies less and social strategies the least. Findings of the present study also indicate that the different strategies are respectively emphasized for the male and female students, students of arts and science and engineering. 展开更多
关键词 language learning strategies strategy classification major differences sex differences
下载PDF
MIoT Based Skin Cancer Detection Using Bregman Recurrent Deep Learning
9
作者 Nithya Rekha Sivakumar Sara Abdelwahab Ghorashi +2 位作者 Faten Khalid Karim Eatedal Alabdulkreem Amal Al-Rasheed 《Computers, Materials & Continua》 SCIE EI 2022年第12期6253-6267,共15页
Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis... Mobile clouds are the most common medium for aggregating,storing,and analyzing data from the medical Internet of Things(MIoT).It is employed to monitor a patient’s essential health signs for earlier disease diagnosis and prediction.Among the various disease,skin cancer was the wide variety of cancer,as well as enhances the endurance rate.In recent years,many skin cancer classification systems using machine and deep learning models have been developed for classifying skin tumors,including malignant melanoma(MM)and other skin cancers.However,accurate cancer detection was not performed with minimum time consumption.In order to address these existing problems,a novel Multidimensional Bregman Divergencive Feature Scaling Based Cophenetic Piecewise Regression Recurrent Deep Learning Classification(MBDFS-CPRRDLC)technique is introduced for detecting cancer at an earlier stage.The MBDFS-CPRRDLC performs skin cancer detection using different layers such as input,hidden,and output for feature selection and classification.The patient information is composed of IoT.The patient information was stored in mobile clouds server for performing predictive analytics.The collected data are sent to the recurrent deep learning classifier.In the first hidden layer,the feature selection process is carried out using the Multidimensional Bregman Divergencive Feature Scaling technique to find the significant features for disease identification resulting in decreases time consumption.Followed by,the disease classification is carried out in the second hidden layer using cophenetic correlative piecewise regression for analyzing the testing and training data.This process is repeatedly performed until the error gets minimized.In this way,disease classification is accurately performed with higher accuracy.Experimental evaluation is carried out for factors namely Accuracy,precision,recall,F-measure,as well as cancer detection time,by the amount of patient data.The observed result confirms that the proposed MBDFS-CPRRDLC technique increases accuracy as well as lesser cancer detection time compared to the conventional approaches. 展开更多
关键词 MIoT skin cancer detection recurrent deep learning classification multidimensional bregman divergencive scaling cophenetic correlative piecewise regression
下载PDF
Novel magnetic field computation model in pattern classification
10
作者 Feng Pan Xiaoting Li +3 位作者 Ting Long Xiaohui Hu Tingting Ren Junping Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期862-869,共8页
Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic fie... Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved. 展开更多
关键词 magnetic field computation (MFC) field computation particle swarm optimization (PSO) finite element analysis ma- chine learning and pattern classification.
下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
11
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(ELM) features-extracted Rayleigh fading channel
下载PDF
SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management
12
作者 Ana María Peco Chacón Isaac Segovia Ramírez Fausto Pedro García Márquez 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2595-2608,共14页
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co... Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification. 展开更多
关键词 Machine learning classification support vector machine false alarm wind turbine cross-validation
下载PDF
Particle swarm optimization for train schedule of Y-type train routing in urban rail transit 被引量:2
13
作者 WEI Zi-wen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期87-93,共7页
The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of t... The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly. 展开更多
关键词 urban traffic train schedule particle swarm optimization(PSO) classification learning Y-type train routing
下载PDF
Two-level hierarchical feature learning for image classification 被引量:3
14
作者 Guang-hui SONG Xiao-gang JIN +1 位作者 Gen-lang CHEN Yan NIE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第9期897-906,共10页
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific... In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods. 展开更多
关键词 Transfer learning Feature learning Deep convolutional neural network Hierarchical classification Spectral clustering
原文传递
Machine learning classification approach for formation delineation at the basin-scale
15
作者 Derek Vikara Vikas Khanna 《Petroleum Research》 2022年第2期165-176,共12页
Machine learning and artificial intelligence approaches have rapidly gained popularity for use in many subsurface energy applications.They are seen as novel methods that may enhance existing capabilities,providing for... Machine learning and artificial intelligence approaches have rapidly gained popularity for use in many subsurface energy applications.They are seen as novel methods that may enhance existing capabilities,providing for improved efficiency in exploration and production operations.Furthermore,their inte-gration into reservoir management workflows may shape the future landscape of the energy industry.This study implements a framework that generates predictive models using multiple machine learning classification-based algorithms which can identify specific stratigraphic units(i.e.,formations)as a function of total vertical depth and spatial positioning.The framework is applied in a case study to 13 specific formations of interest(Upper Spraberry through Atoka/Morrow reservoirs)in the Midland Basin,West Texas,United States;a prominent hydrocarbon producing sub-basin of the larger Permian Basin.The study dataset consists of over 275,000 records and includes data fields like formation iden-tifier,true vertical depth(in feet)of formations observed,and latitude and longitude coordinates(in decimal degrees).A subset of 134,374 data records were relevant to the 13 distinct formations of interest and were extracted and used for machine learning model training,validation,and testing.Four super-vised learning approaches including random forest(RF),gradient boosting(GB),support vector machine(SVM),and multilayer perceptron neural network(MLP)were evaluated and their prediction accuracy compared.The best performing model was ultimately built on the RF algorithm and is capable of an overall prediction accuracy of 93 percent on holdout data.The RF-based model demonstrated high prediction accuracy for major oil and gas producing zones including the San Andres,Upper Spraberry,Lower Spraberry,Clearfork,and Wolfcamp at 98,94,89,94,and 94 percent respectively.Overall,the resulting data-driven model provides a robust,cost-effective approach which can complement contemporary reservoir management approaches for multiple subsurface energy applications. 展开更多
关键词 Permian basin Midland basin K-means clustering Random forest classification machine learning
原文传递
Learning from the crowd:Road infrastructure monitoring system 被引量:2
16
作者 Johannes Masino Jakob Thumm +1 位作者 Michael Frey Frank Gauterin 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第5期451-463,共13页
The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular int... The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth. 展开更多
关键词 Road infrastructure condition Monitoring Tree graphs Euclidean distance Machine learning classification
原文传递
A Heterogeneous Ensemble of Extreme Learning Machines with Correntropy and Negative Correlation 被引量:2
17
作者 Adnan O.M.Abuassba Yao Zhang +2 位作者 Xiong Luo Dezheng Zhang Wulamu Aziguli 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第6期691-701,共11页
The Extreme Learning Machine(ELM) is an effective learning algorithm for a Single-Layer Feedforward Network(SLFN). It performs well in managing some problems due to its fast learning speed. However, in practical a... The Extreme Learning Machine(ELM) is an effective learning algorithm for a Single-Layer Feedforward Network(SLFN). It performs well in managing some problems due to its fast learning speed. However, in practical applications, its performance might be affected by the noise in the training data. To tackle the noise issue, we propose a novel heterogeneous ensemble of ELMs in this article. Specifically, the correntropy is used to achieve insensitive performance to outliers, while implementing Negative Correlation Learning(NCL) to enhance diversity among the ensemble. The proposed Heterogeneous Ensemble of ELMs(HE2 LM) for classification has different ELM algorithms including the Regularized ELM(RELM), the Kernel ELM(KELM), and the L2-norm-optimized ELM(ELML2). The ensemble is constructed by training a randomly selected ELM classifier on a subset of the training data selected through random resampling. Then, the class label of unseen data is predicted using a maximum weighted sum approach. After splitting the training data into subsets, the proposed HE2 LM is tested through classification and regression tasks on real-world benchmark datasets and synthetic datasets. Hence, the simulation results show that compared with other algorithms, our proposed method can achieve higher prediction accuracy, better generalization, and less sensitivity to outliers. 展开更多
关键词 Extreme learning Machine(ELM) ensemble classification correntropy negative correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部