The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin...Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.展开更多
Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Ch...Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.展开更多
Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameter...Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value,lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.展开更多
The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerod...The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads:the aerodynamic loads can change the position of vehicle system(consequently the contact relations),the wheel/rail normal contact forces,the gravitational restoring forces/moments and the creep forces/moments.A mathematical model for hunting stability incorporating such influences was developed.A computer program capable of incorporating the effects of aerodynamic loads based on the model was written,and the critical speeds were calculated using this program.The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method,the results were also compared with the situations without aerodynamic loads.It is shown that the most dominant factors a ff ecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not.The damping of yaw damper is the most dominant influencing factor for linear critical speeds,while the damping of lateral damper is most dominant for nonlinear ones.When the influences of aerodynamic loads are considered,the linear critical speeds decrease with the rise of cross wind velocity,whereas it is not the case for the nonlinear critical speeds.The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads.Combined actions of aerodynamic loads and suspension parameters also a ff ect the critical speeds.The effects of such joint action are more obvious for nonlinear critical speeds.展开更多
This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- bl...This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands.展开更多
The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to ma...The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traver...Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.展开更多
By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and ...By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in...In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI.展开更多
This paper presents a method of tuning governor control parameters of an isolated hydropower generator considering the primary frequency performance and small-signal stability. First, generators that can be operated i...This paper presents a method of tuning governor control parameters of an isolated hydropower generator considering the primary frequency performance and small-signal stability. First, generators that can be operated in isolated state are identified. Second, different schemes are proposed for generator mode switching from on-grid to off-grid state through comparison and mechanism analysis. Third, the time domain model and frequency domain model of the isolated generator governor are constructed to respectively estimate the primary frequency performance and small signal stability. Parameter sets that satisfy the primary frequency performance and small signal stability are acquired as optimal values of governor control parameters. Finally, the measurement-based parameters of the governor are identified and validated using simulations to demonstrate the feasibility and effectiveness of the method.展开更多
A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and ...A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.展开更多
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit...Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.展开更多
For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic des...For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.展开更多
The sensitivity of power system stability (including transient and dynamic stabilities) to generator parameters (including parameters of generator model, excitation system and power system stabilizer) is analyzed in d...The sensitivity of power system stability (including transient and dynamic stabilities) to generator parameters (including parameters of generator model, excitation system and power system stabilizer) is analyzed in depth by simulations. From the tables and plots of the resultant simulated data, a number of useful rules are revealed. These rules can be directly applied to the engineering checking of generator parameters. Because the complex theoretical analyses are circumvented, the checking procedure is greatly simplified, remarkably promoting the working efficiency of electrical engineers on site.展开更多
Stability parameters (Monin-Obukhov length L, gradient Richardson number Ri and bulk Rischardson number Ri), which are applicable in urban environment, were discussed for ways of calculating classification standards. ...Stability parameters (Monin-Obukhov length L, gradient Richardson number Ri and bulk Rischardson number Ri), which are applicable in urban environment, were discussed for ways of calculating classification standards. Gradient observations from a 325-m meteorological tower in Beijing are used to categorize Rib based on three different standards of stability proposed by D. Golder, Irwin and Houghton. The results show that it is relatively reasonable for the region of Beijing to apply the classification standard by Irwin.展开更多
The traditional production planning model based upon the famous linear programming formulation has been well known in the literature. The consideration of uncertainty in manufacturing systems supposes a great advance....The traditional production planning model based upon the famous linear programming formulation has been well known in the literature. The consideration of uncertainty in manufacturing systems supposes a great advance. Models for production planning which do not recognize the uncertainty can be expected to generate inferior planning decisions as compared to models that explicitly account the uncertainty. This paper deals with production planning problem with fuzzy parameters in both of the objective function and constraints. We have a planning problem to maximize revenues net of the production inventory and lost sales cost. The existing results concerning the qualitative and quantitative analysis of basic notions in parametric production planning problem with fuzzy parameters. These notions are the set of feasible parameters, the solvability set and the stability set of the first kind.展开更多
In formulas that use the probabilistic method to calculate the stability of the CWR, the value of the cross-resistance of the track beds hasn’t fully taken into account the influence of the type of the parameter comb...In formulas that use the probabilistic method to calculate the stability of the CWR, the value of the cross-resistance of the track beds hasn’t fully taken into account the influence of the type of the parameter combination of the track bed, making the calculation results for a particular line undifferentiated. The analogy of the trajectory of the lateral displacement of the trackless bed is proposed. It is proposed that the lateral resistance of the track bed is also ambiguous within the allowable lateral displacement limit, and equivalent randomization is performed. Through the analysis of the characteristics of the appearance parameters of the track bed, a calculation formula containing multiple surface parameters for the lateral resistance of the track bed was established, and the values of various factors were reasonably analyzed. The purpose of this paper is to point out that in the stability evaluation formula, the value of the lateral parameters of the ballast bed lacks the consideration of the surface parameters. Based on the surface parameters, a model to evaluate the lateral resistance of the track bed is proposed. It can be seen as a refinement of the formula.展开更多
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金supported by the National Natural Science Foundation of China(Grant No.42162026)the Applied Basic Research Foundation of Yunnan Province(Grant No.202201AT070083).
文摘Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.
基金Project (51175095) supported by the National Natural Science Foundation of ChinaProjects (10251009001000001,9151009001000020) supported by the Natural Science Foundation of Guangdong Province,ChinaProject (20104420110001) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.
基金Supported by the Fundamental Research Project of COSTI ND(K1203020507)
文摘Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value,lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.
基金supported by the National Basic Research Program(973 Program)of China(2011CB711100 and 2014CB046801)the National Natural Science Foundation of China(11072246 and51490673)the Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-EW-L01)
文摘The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads:the aerodynamic loads can change the position of vehicle system(consequently the contact relations),the wheel/rail normal contact forces,the gravitational restoring forces/moments and the creep forces/moments.A mathematical model for hunting stability incorporating such influences was developed.A computer program capable of incorporating the effects of aerodynamic loads based on the model was written,and the critical speeds were calculated using this program.The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method,the results were also compared with the situations without aerodynamic loads.It is shown that the most dominant factors a ff ecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not.The damping of yaw damper is the most dominant influencing factor for linear critical speeds,while the damping of lateral damper is most dominant for nonlinear ones.When the influences of aerodynamic loads are considered,the linear critical speeds decrease with the rise of cross wind velocity,whereas it is not the case for the nonlinear critical speeds.The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads.Combined actions of aerodynamic loads and suspension parameters also a ff ect the critical speeds.The effects of such joint action are more obvious for nonlinear critical speeds.
文摘This paper introduces a grey classifica- tion method forevaluating the stability of dangerous rock- block masses according tothe Grey System Theory. This method is applied to the stability ofthe V~# dangerous rock- block masses of Qingjiang water conservancyproject, and better results are abtained. The method which isadvanced in the article is very single and practical, and it can meetall kinds of project's demands.
基金financially supported by the Saudi Geological Survey through a doctoral fellowship at McGill University
文摘The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
基金Project supported by the Heilongjiang Province Natural Science Foundation Joint Guidance Project,China (Grant No.LH2020F022)the Fundamental Research Funds for the Central Universities,China (Grant No.3072022CF0801)。
文摘Conservative chaotic systems have unique advantages over dissipative chaotic systems in the fields of secure communication and pseudo-random number generator because they do not have attractors but possess good traversal and pseudorandomness. In this work, a novel five-dimensional(5D) Hamiltonian conservative hyperchaotic system is proposed based on the 5D Euler equation. The proposed system can have different types of coordinate transformations and time reversal symmetries. In this work, Hamilton energy and Casimir energy are analyzed firstly, and it is proved that the new system satisfies Hamilton energy conservation and can generate chaos. Then, the complex dynamic characteristics of the system are demonstrated and the conservatism and chaos characteristics of the system are verified through the correlation analysis methods such as phase diagram, equilibrium point, Lyapunov exponent, bifurcation diagram, and SE complexity. In addition, a detailed analysis of the multistable characteristics of the system reveals that many energy-related coexisting orbits exist. Based on the infinite number of center-type and saddle-type equilibrium points, the dynamic characteristics of the hidden multistability of the system are revealed. Then, the National Institute of Standards and Technology(NIST)test of the new system shows that the chaotic sequence generated by the system has strong pseudo-random. Finally, the circuit simulation and hardware circuit experiment of the system are carried out with Multisim simulation software and digital signal processor(DSP) respectively. The experimental results confirm that the new system has good ergodicity and realizability.
基金supported by State Grid Information and Telecommunication Group Scientific and Technological Innovation Project“Research on Power Digital Space Technology System and Key Technologies”(Program No.SGIT0000XMJS2310456).
文摘By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
文摘In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI.
基金supported by the Fujian Provincial Government Project (Title: Research on whole process evaluation of dynamic stability and control strategy in condition of grid connection of ultra-high voltage and large scale penetration of nuclear power.No.2015H0023)the State Grid Science & Technology Project (Title: Research on the improvement on stability of primary frequency of generator in account of the tolerance of equipment.No.52130417002P)the Key project of State Grid Fujian Electric Power Company,Ltd (research on key technologies of primary frequency power oscillation mechanism analysis and inhibition measures in large-scale unit in Fujian power grid.No.52130417000J)
文摘This paper presents a method of tuning governor control parameters of an isolated hydropower generator considering the primary frequency performance and small-signal stability. First, generators that can be operated in isolated state are identified. Second, different schemes are proposed for generator mode switching from on-grid to off-grid state through comparison and mechanism analysis. Third, the time domain model and frequency domain model of the isolated generator governor are constructed to respectively estimate the primary frequency performance and small signal stability. Parameter sets that satisfy the primary frequency performance and small signal stability are acquired as optimal values of governor control parameters. Finally, the measurement-based parameters of the governor are identified and validated using simulations to demonstrate the feasibility and effectiveness of the method.
文摘A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.
文摘Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.
文摘For discrete-time T-S fuzzy systems, the stability and controller design method are in-vestigated based on parameter-dependent Lyapunov function (PDLF). T-S fuzzy systems di?er fromnon-fuzzy systems with polytopic description or multi-model description in that the weighting coef-ficients have respective meanings. They, however, have stability aspect in common. By adopting astability condition for polytopic systems obtained via PDLF, and combining the properties of T-Sfuzzy systems, new results are given in this paper. An example shows that by applying the newresults, the stability conditions that can be distinguished are less conservative.
文摘The sensitivity of power system stability (including transient and dynamic stabilities) to generator parameters (including parameters of generator model, excitation system and power system stabilizer) is analyzed in depth by simulations. From the tables and plots of the resultant simulated data, a number of useful rules are revealed. These rules can be directly applied to the engineering checking of generator parameters. Because the complex theoretical analyses are circumvented, the checking procedure is greatly simplified, remarkably promoting the working efficiency of electrical engineers on site.
基金Open Foundation by the Guangzhou Institute of Tropical and Marine Meteorology, CMA
文摘Stability parameters (Monin-Obukhov length L, gradient Richardson number Ri and bulk Rischardson number Ri), which are applicable in urban environment, were discussed for ways of calculating classification standards. Gradient observations from a 325-m meteorological tower in Beijing are used to categorize Rib based on three different standards of stability proposed by D. Golder, Irwin and Houghton. The results show that it is relatively reasonable for the region of Beijing to apply the classification standard by Irwin.
文摘The traditional production planning model based upon the famous linear programming formulation has been well known in the literature. The consideration of uncertainty in manufacturing systems supposes a great advance. Models for production planning which do not recognize the uncertainty can be expected to generate inferior planning decisions as compared to models that explicitly account the uncertainty. This paper deals with production planning problem with fuzzy parameters in both of the objective function and constraints. We have a planning problem to maximize revenues net of the production inventory and lost sales cost. The existing results concerning the qualitative and quantitative analysis of basic notions in parametric production planning problem with fuzzy parameters. These notions are the set of feasible parameters, the solvability set and the stability set of the first kind.
文摘In formulas that use the probabilistic method to calculate the stability of the CWR, the value of the cross-resistance of the track beds hasn’t fully taken into account the influence of the type of the parameter combination of the track bed, making the calculation results for a particular line undifferentiated. The analogy of the trajectory of the lateral displacement of the trackless bed is proposed. It is proposed that the lateral resistance of the track bed is also ambiguous within the allowable lateral displacement limit, and equivalent randomization is performed. Through the analysis of the characteristics of the appearance parameters of the track bed, a calculation formula containing multiple surface parameters for the lateral resistance of the track bed was established, and the values of various factors were reasonably analyzed. The purpose of this paper is to point out that in the stability evaluation formula, the value of the lateral parameters of the ballast bed lacks the consideration of the surface parameters. Based on the surface parameters, a model to evaluate the lateral resistance of the track bed is proposed. It can be seen as a refinement of the formula.