A Riesz type product as Pn=nЛj=1(1+awj+bwj+1)is studied, where a, b are two real numbers with |a| + |b| 〈 1, and {wj} are indepen- dent random variables taking values in (-1, 1} with equal probability. Le...A Riesz type product as Pn=nЛj=1(1+awj+bwj+1)is studied, where a, b are two real numbers with |a| + |b| 〈 1, and {wj} are indepen- dent random variables taking values in (-1, 1} with equal probability. Let dw be the normalized Haar measure on the Cantor group Ω = (-1, 1}^N. The sequence of P,~dw 1 probability measures {Pndw/E(Pn) } is showed to converge weakly to a unique continuous measure on/2, and the obtained measure is singular with respect to dw.展开更多
文摘A Riesz type product as Pn=nЛj=1(1+awj+bwj+1)is studied, where a, b are two real numbers with |a| + |b| 〈 1, and {wj} are indepen- dent random variables taking values in (-1, 1} with equal probability. Let dw be the normalized Haar measure on the Cantor group Ω = (-1, 1}^N. The sequence of P,~dw 1 probability measures {Pndw/E(Pn) } is showed to converge weakly to a unique continuous measure on/2, and the obtained measure is singular with respect to dw.