Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ense...Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.展开更多
To facilitate developers in effective allocation of their testing and debugging efforts, many software defect prediction techniques have been proposed in the literature. These techniques can be used to predict classes...To facilitate developers in effective allocation of their testing and debugging efforts, many software defect prediction techniques have been proposed in the literature. These techniques can be used to predict classes that are more likely to be buggy based on the past history of classes, methods, or certain other code elements. These techniques are effective provided that a sufficient amount of data is available to train a prediction model. However, sufficient training data are rarely available for new software projects. To resolve this problem, cross-project defect prediction, which transfers a prediction model trained using data from one project to another, was proposed and is regarded as a new challenge in the area of defect prediction. Thus far, only a few cross-project defect prediction techniques have been proposed. To advance the state of the art, in this study, we investigated seven composite algorithms that integrate multiple machine learning classifiers to improve cross-project defect prediction. To evaluate the performance of the composite algorithms, we performed experiments on 10 open-source software systems from the PROMISE repository, which contain a total of 5,305 instances labeled as defective or clean. We compared the composite algorithms with the combined defect predictor where logistic regression is used as the meta classification algorithm (CODEPLogistic), which is the most recent cross-project defect prediction algorithm in terms of two standard evaluation metrics: cost effectiveness and F-measure. Our experimental results show that several algorithms outperform CODEPLogistic:Maximum voting shows the best performance in terms of F-measure and its average F-measure is superior to that of CODEPLogistic by 36.88%. Bootstrap aggregation (Bagging J48) shows the best performance in terms of cost effectiveness and its average cost effectiveness is superior to that of CODEPLogistic by 15.34%.展开更多
Precise web page classification can be achieved by evaluating features of web pages, and the structural features of web pages are effective complements to their textual features. Various classifiers have different cha...Precise web page classification can be achieved by evaluating features of web pages, and the structural features of web pages are effective complements to their textual features. Various classifiers have different characteristics, and multiple classifiers can be combined to allow classifiers to complement one another. In this study, a web page classification method based on heterogeneous features and a combination of multiple classifiers is proposed. Different from computing the frequency of HTML tags, we exploit the tree-like structure of HTML tags to characterize the structural features of a web page. Heterogeneous textual features and the proposed tree-like structural features are converted into vectors and fused. Confidence is proposed here as a criterion to compare the classification results of different classifiers by calculating the classification accuracy of a set of samples. Multiple classifiers are combined based on confidence with different decision strategies, such as voting, confidence comparison, and direct output, to give the final classification results. Experimental results demonstrate that on the Amazon dataset, 7-web-genres dataset, and DMOZ dataset, the accuracies are increased to 94.2%, 95.4%, and 95.7%, respectively. The fusion of the textual features with the proposed structural features is a comprehensive approach, and the accuracy is higher than that when using only textual features. At the same time, the accuracy of the web page classification is improved by combining multiple classifiers, and is higher than those of the related web page classification algorithms.展开更多
This paper proposed an algorithm in which the maximum probability and the weighted average strategy were used for the combination of member classifiers. Using parallel computing, we test the algorithm on a China-Brazi...This paper proposed an algorithm in which the maximum probability and the weighted average strategy were used for the combination of member classifiers. Using parallel computing, we test the algorithm on a China-Brazil Earth Resources Satellite (CBERS) image for land cover classification. The results show that using three computers in parallel can reduce the classification time by 30%, as compared with using only one computer with a dual core processor. The accuracy of the final image is 93.34%, and Kappa is 0.92. Multiple classifier combination can enhance the precision of the image classification, and parallel computing can increase the speed of calculation so that it becomes possible to process remote sensing images with high efficiency and accuracy.展开更多
Automatic prosodic break detection and annotation are important for both speech understanding and natural speech synthesis. In this paper, we discuss automatic prosodic break detection and feature analysis. The contri...Automatic prosodic break detection and annotation are important for both speech understanding and natural speech synthesis. In this paper, we discuss automatic prosodic break detection and feature analysis. The contributions of the paper are two aspects. One is that we use classifier combination method to detect Mandarin and English prosodic break using acoustic, lexical and syntactic evidence. Our proposed method achieves better performance on both the Mandarin prosodic annotation corpus Annotated Speech Corpus of Chinese Discourse and the English prosodic annotation corpus -- Boston University Radio News Corpus when compared with the baseline system and other researches' experimental results. The other is the feature analysis for prosodic break detection. The functions of different features, such as duration, pitch, energy, and intensity, are analyzed and compared in Mandarin and English prosodic break detection. Based on the feature analysis, we also verify some linguistic conclusions.展开更多
基金the Natural Science Foundation of Shaan’xi Province (2005F51).
文摘Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 61602403) and National Key Technology R&D Program of the Ministry of Science and Technology of China (2015BAH17F01).
文摘To facilitate developers in effective allocation of their testing and debugging efforts, many software defect prediction techniques have been proposed in the literature. These techniques can be used to predict classes that are more likely to be buggy based on the past history of classes, methods, or certain other code elements. These techniques are effective provided that a sufficient amount of data is available to train a prediction model. However, sufficient training data are rarely available for new software projects. To resolve this problem, cross-project defect prediction, which transfers a prediction model trained using data from one project to another, was proposed and is regarded as a new challenge in the area of defect prediction. Thus far, only a few cross-project defect prediction techniques have been proposed. To advance the state of the art, in this study, we investigated seven composite algorithms that integrate multiple machine learning classifiers to improve cross-project defect prediction. To evaluate the performance of the composite algorithms, we performed experiments on 10 open-source software systems from the PROMISE repository, which contain a total of 5,305 instances labeled as defective or clean. We compared the composite algorithms with the combined defect predictor where logistic regression is used as the meta classification algorithm (CODEPLogistic), which is the most recent cross-project defect prediction algorithm in terms of two standard evaluation metrics: cost effectiveness and F-measure. Our experimental results show that several algorithms outperform CODEPLogistic:Maximum voting shows the best performance in terms of F-measure and its average F-measure is superior to that of CODEPLogistic by 36.88%. Bootstrap aggregation (Bagging J48) shows the best performance in terms of cost effectiveness and its average cost effectiveness is superior to that of CODEPLogistic by 15.34%.
基金Project supported by the National Natural Science Foundation of China(No.61471314)the Welfare Technology Research Project of Zhejiang Province,China(No.LGG18F010003)。
文摘Precise web page classification can be achieved by evaluating features of web pages, and the structural features of web pages are effective complements to their textual features. Various classifiers have different characteristics, and multiple classifiers can be combined to allow classifiers to complement one another. In this study, a web page classification method based on heterogeneous features and a combination of multiple classifiers is proposed. Different from computing the frequency of HTML tags, we exploit the tree-like structure of HTML tags to characterize the structural features of a web page. Heterogeneous textual features and the proposed tree-like structural features are converted into vectors and fused. Confidence is proposed here as a criterion to compare the classification results of different classifiers by calculating the classification accuracy of a set of samples. Multiple classifiers are combined based on confidence with different decision strategies, such as voting, confidence comparison, and direct output, to give the final classification results. Experimental results demonstrate that on the Amazon dataset, 7-web-genres dataset, and DMOZ dataset, the accuracies are increased to 94.2%, 95.4%, and 95.7%, respectively. The fusion of the textual features with the proposed structural features is a comprehensive approach, and the accuracy is higher than that when using only textual features. At the same time, the accuracy of the web page classification is improved by combining multiple classifiers, and is higher than those of the related web page classification algorithms.
基金Supported by the National Natural Science Foundation of China (70873117)
文摘This paper proposed an algorithm in which the maximum probability and the weighted average strategy were used for the combination of member classifiers. Using parallel computing, we test the algorithm on a China-Brazil Earth Resources Satellite (CBERS) image for land cover classification. The results show that using three computers in parallel can reduce the classification time by 30%, as compared with using only one computer with a dual core processor. The accuracy of the final image is 93.34%, and Kappa is 0.92. Multiple classifier combination can enhance the precision of the image classification, and parallel computing can increase the speed of calculation so that it becomes possible to process remote sensing images with high efficiency and accuracy.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 90820303,90820011the Natural Science Foundation of Shandong Province of China under Grant No. ZR2011FQ024
文摘Automatic prosodic break detection and annotation are important for both speech understanding and natural speech synthesis. In this paper, we discuss automatic prosodic break detection and feature analysis. The contributions of the paper are two aspects. One is that we use classifier combination method to detect Mandarin and English prosodic break using acoustic, lexical and syntactic evidence. Our proposed method achieves better performance on both the Mandarin prosodic annotation corpus Annotated Speech Corpus of Chinese Discourse and the English prosodic annotation corpus -- Boston University Radio News Corpus when compared with the baseline system and other researches' experimental results. The other is the feature analysis for prosodic break detection. The functions of different features, such as duration, pitch, energy, and intensity, are analyzed and compared in Mandarin and English prosodic break detection. Based on the feature analysis, we also verify some linguistic conclusions.