To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed p...To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.展开更多
High precision pig cough recognition and low computational cost is of great importance for the realization of early warning of pig respiratory diseases.Numerous researchers have improved the recognition rate of pig co...High precision pig cough recognition and low computational cost is of great importance for the realization of early warning of pig respiratory diseases.Numerous researchers have improved the recognition rate of pig cough sounds to a certain extent from feature selection and feature fusion perspectives.However,there is still a margin for the improvement in the accuracy and complexity of existing methods.Meanwhile,it is challenging to further enhance the precision of a single classifier.Therefore,this study proposed a multi-classifier fusion strategy based on Dempster Shafer distance(DS-distance)algorithm to increase the classification accuracy.Considering the engineering implementation,the machine learning with low computational complexity for fusion was chosen.First,three metrics of accuracy and diversity between classifiers were defined,including overall accuracy(OA),double fault(DF),and overall accuracy and double fault(OADF),for selecting the base classifiers.Subsequently,a two-step base classifier selection approach based on these metrics was proposed to make an optimized selection of features and classifiers.Finally,the proposed DS-distance algorithm was used to fuse the selected base classifiers to create a classification.The sound data collected in the pig barn verified the proposed algorithm.The experimental results revealed that the overall recognition accuracy of the proposed method could reach 98.76%,which was better than the existing methods.This study has achieved a high recognition accuracy through ensembled machine learning with low computational complexity.The proposed method provided an efficient way for the quick establishment of high precision pig cough recognition model in practice.展开更多
基金This work is partially supported by grants from the Key Program of National Natural Science Foundation of China(NSFC Nos.71631005 and 71731009)the Major Program of the National Social Science Foundation of China(No.19ZDA103).
文摘To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.
基金supported by the Outstanding Youth Program of the Natural Science Foundation of Heilongjiang Province of China(Grant No.YQ2023C012)the project of the National Natural Science Foundation of China(Grant No.32172784,31902210)+3 种基金the Academic Backbone Project of Northeast Agricultural Universitythe National Key Research and Development Program of China(Grant No.2019YFE0125600)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(Grant No.UNPYSCT-2020092)the earmarked fund for CARS-36 and CARS-35.
文摘High precision pig cough recognition and low computational cost is of great importance for the realization of early warning of pig respiratory diseases.Numerous researchers have improved the recognition rate of pig cough sounds to a certain extent from feature selection and feature fusion perspectives.However,there is still a margin for the improvement in the accuracy and complexity of existing methods.Meanwhile,it is challenging to further enhance the precision of a single classifier.Therefore,this study proposed a multi-classifier fusion strategy based on Dempster Shafer distance(DS-distance)algorithm to increase the classification accuracy.Considering the engineering implementation,the machine learning with low computational complexity for fusion was chosen.First,three metrics of accuracy and diversity between classifiers were defined,including overall accuracy(OA),double fault(DF),and overall accuracy and double fault(OADF),for selecting the base classifiers.Subsequently,a two-step base classifier selection approach based on these metrics was proposed to make an optimized selection of features and classifiers.Finally,the proposed DS-distance algorithm was used to fuse the selected base classifiers to create a classification.The sound data collected in the pig barn verified the proposed algorithm.The experimental results revealed that the overall recognition accuracy of the proposed method could reach 98.76%,which was better than the existing methods.This study has achieved a high recognition accuracy through ensembled machine learning with low computational complexity.The proposed method provided an efficient way for the quick establishment of high precision pig cough recognition model in practice.