Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints...Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.展开更多
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is hig...Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset.展开更多
Cluster analysis is a method often used in pattern recognition. With the aid of the signal processing and the learning of the computer, disfferent samples can be classifeid and recognized in a dimension reduction spac...Cluster analysis is a method often used in pattern recognition. With the aid of the signal processing and the learning of the computer, disfferent samples can be classifeid and recognized in a dimension reduction space of the characteristics because of the differences of their character -istics. To realize dimension reduction transformation, a nonlinear mapping method was discussed in this paper. To prove that the cluster analysis is suitable for quite different fields of samples, in this paper some ship noises and some EEG as the samples belong to two different fields are classified and shown. And it is worthy to point out that an adaptive step size expression of adaptive iteration deduced here will also be effective if it is applied to speed adaptive algorithm convergence of general signal processing.展开更多
The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as ...The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.展开更多
文摘Biometric recognition refers to the identification of individuals through their unique behavioral features(e.g.,fingerprint,face,and iris).We need distinguishing characteristics to identify people,such as fingerprints,which are world-renowned as the most reliablemethod to identify people.The recognition of fingerprints has become a standard procedure in forensics,and different techniques are available for this purpose.Most current techniques lack interest in image enhancement and rely on high-dimensional features to generate classification models.Therefore,we proposed an effective fingerprint classification method for classifying the fingerprint image as authentic or altered since criminals and hackers routinely change their fingerprints to generate fake ones.In order to improve fingerprint classification accuracy,our proposed method used the most effective texture features and classifiers.Discriminant Analysis(DCA)and Gaussian Discriminant Analysis(GDA)are employed as classifiers,along with Histogram of Oriented Gradient(HOG)and Segmentation-based Feature Texture Analysis(SFTA)feature vectors as inputs.The performance of the classifiers is determined by assessing a range of feature sets,and the most accurate results are obtained.The proposed method is tested using a Sokoto Coventry Fingerprint Dataset(SOCOFing).The SOCOFing project includes 6,000 fingerprint images collected from 600 African people whose fingerprints were taken ten times.Three distinct degrees of obliteration,central rotation,and z-cut have been performed to obtain synthetically altered replicas of the genuine fingerprints.The proposal achieved massive success with a classification accuracy reaching 99%.The experimental results indicate that the proposed method for fingerprint classification is feasible and effective.The experiments also showed that the proposed SFTA-based GDA method outperformed state-of-art approaches in feature dimension and classification accuracy.
基金Projects(61170156,60933005)supported by the National Natural Science Foundation of China
文摘Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset.
基金The project supported by National Natural Science Foundation of China
文摘Cluster analysis is a method often used in pattern recognition. With the aid of the signal processing and the learning of the computer, disfferent samples can be classifeid and recognized in a dimension reduction space of the characteristics because of the differences of their character -istics. To realize dimension reduction transformation, a nonlinear mapping method was discussed in this paper. To prove that the cluster analysis is suitable for quite different fields of samples, in this paper some ship noises and some EEG as the samples belong to two different fields are classified and shown. And it is worthy to point out that an adaptive step size expression of adaptive iteration deduced here will also be effective if it is applied to speed adaptive algorithm convergence of general signal processing.
文摘The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.