Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent an...Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.展开更多
The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried ...The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.展开更多
1 Introduction As new exploration domain for oil and gas,reservoirs with low porosity and low permeability have become a hotspot in recent years(Li Daopin,1997).With the improvement of technology,low porosity and low
In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic cla...In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic clastic reservoirs in the Tazhong area based on a lot of data. Several issues about the hydrocarbon accumulation related to the reservoirs were also discussed. The results were concluded that: the high-value areas of the porosity and permeability of clastic reservoirs were located in the southeast of the Tazhong area; the content of cement (carbonate cement in particular) was the main factor controlling the porosity and permeability of clastic reservoirs; the hydrocarbon distributions of Carboniferous and Silurian clastic reservoirs were closely related to the porosity and permeability; the favorable hydrocarbon accumulation areas of the two sets of strata were located in the southeast of this area, especially in the updip pinch-out area.展开更多
The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controllin...The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.展开更多
Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoi...Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoirs. Based on a study of the diagenesis of clastic reservoirs in the Bohai Bay Basin, Tarim Basin, and Pearl River Mouth Basin and physical and numerical simulation experiments of fluid-rock interactions, this paper proposed a successive formation model of secondary pores via feldspar dissolution in deeply buried clastic reservoirs, considering the global research progresses in feldspar dissolution in clastic rocks. Feldspar dissolution can occur from shallow open systems to deep-ultra deep closed systems in petroliferous basins, resulting in the successive formation of secondary pores at different diagenetic stages. The successive mechanism includes three aspects. The first aspect is the succession of corrosive fluids that dissolve minerals. Meteoric freshwater dominates at the Earth’s surface and the early diagenetic A stage. Subsequently, organic acids and COformed via kerogen maturation dominate at the early diagenetic B stage to the middle diagenetic stage. COand organic acids formed via hydrocarbon oxidation in hydrocarbon reservoirs dominate at the middle diagenetic B stage to the late diagenetic stage. The second aspect is the successive formation processes of secondary pores via feldspar dissolution. Large-scale feldspar secondary pores identified in deep reservoirs include secondary pores formed at shallow-medium depths that are subsequently preserved into deep layers, as well as secondary pores formed at deep depths. Existing secondary pores in deeply buried reservoirs are the superposition of successively feldspar dissolution caused by different acids at different stages. The third aspect is a successive change in the feldspar alteration pathways and porosity enhancement/preservation effect. Open to semi-open diagenetic systems are developed from the Earth’s surface to the early diagenetic stage, and feldspar dissolution forms enhanced secondary pores. Nearly closed to closed diagenetic systems develop in the middle to late diagenetic stages, and feldspar dissolution forms redistributional secondary pores. The associated cementation causes compression resistance of the rock, which is favorable for the preservation of secondary pores in deep layers. These new insights extend the formation window of secondary pores in petroliferous basins from the traditional acid-oil generation window to a high-temperature gas generation window after hydrocarbon charging. The proposed model explains the genesis of deep-ultra deep high-quality reservoirs with low-permeability, medium-porosity and dominating feldspar secondary pores, which is significant for hydrocarbon exploration in deep to ultra-deep layers.展开更多
Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res...Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.展开更多
Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, poro...Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, porosity measurements and fluid inclusion techniques and so on. The sandstones in the fluvial, (fan) delta-front have the best reservoir quality due to the depositional conditions mechanically controlling the petrology configuration and the primary porosity, and chemically influencing the diagenesis and development of secondary pores. The activity of the boundary faults and the sedimentary facies dominate the variation of reservoir quality in different areas and intervals. The reservoir quality varies with the position of sandstone beds in different vertical models of sandstone and mudstone. This mainly arose from the strong cementation or strong dissolution in the sandstone caused by the diagenesis evolution of adjacent mudstone. With higher oil saturation reservoir quality is better because the hydrocarbon charge favors dissolution and restricts cementation. Diagenesis, depositional conditions and tectonic setting are the key controls of reservoir quality in the Shahejie Formation of the Dongying Sag.展开更多
The natural gas reservoir beds of different areas in China can be divided into three kinds, clastic natural gas reservoir bed, carbonate natural gas reservoir bed and special natural gas reservoir bed. They have diffe...The natural gas reservoir beds of different areas in China can be divided into three kinds, clastic natural gas reservoir bed, carbonate natural gas reservoir bed and special natural gas reservoir bed. They have different combination patterns controlled by deposition, diagenesis and tectonism. Our analysis indicates that the natural gas reservoirs are mainly distributed in the Precambrian, Palaeozoic, Mesozoic, and Tertiary-Quaternary. Craton basin, foreland basin and intracontinental rift basin which contain most of natural gas in China have special geological features and favorable accumulation conditions, and will be important exploration areas in the future.展开更多
The latest researches reveal that studies on unconventional clastic oil reservoirs in China generally lag far behind those in other countries in respect of content and methodology.This study presents the definition an...The latest researches reveal that studies on unconventional clastic oil reservoirs in China generally lag far behind those in other countries in respect of content and methodology.This study presents the definition and classification of unconventional oil reservoirs and analyzes the problems in the fine description of unconventional oil reservoirs.The key content of the fine description of unconventional oil reservoirs is summarized from four aspects:fine fracture characterization based on fine structure interpretation,reservoir architecture characterization based on sedimentary facies,characteristics of nanoscale microscopic pore structure of reservoir,and evaluation of source rock and“sweet spot zone”.Finally,this study suggests that development of fine description of unconventional clastic oil reservoirs in the future should focus on rock brittleness analysis and fracture modeling,geophysical characterization of unconventional clastic oil reservoirs,fluid description of tight reservoirs,and physical/numerical simulation experiments of unconventional oil reservoirs.展开更多
Geoscientific evidence shows that various parameters such as compaction,buoyancy effect,hydrocarbon maturation,gas effect and tectonic activities control the pore pressure of sub-surface geology.Spatially controlled g...Geoscientific evidence shows that various parameters such as compaction,buoyancy effect,hydrocarbon maturation,gas effect and tectonic activities control the pore pressure of sub-surface geology.Spatially controlled geoscientific data in the tectonically active areas is significantly useful for robust estimation of pre-drill pore pressure.The reservoir which is tectonically complex and pore pressure is changing frequently that circumference motivated us to conduct this study.The changes in pore pressure have been captured from the fine-scale to the broad scale in the Jaisalmer sub-basin.Pore pressure variation has been distinctly observed in pre-and post-Jurassic age based on the current study.Post-stack seismic inversion study was conducted to capturing the variation of pore pressure.Analysis of low-frequency spectrum and integrated interval velocity model provided a detailed feature of pore pressure in each compartment of the study area.Pore pressure estimated from well log data was correlated with seismic inversion based result.Based on the current study one well has been proposed where pore pressure was estimated and two distinguished trends are identified in the study zone.The approaches of the current study were analysed thoroughly and it will be highly useful in complex reservoir condition where pore pressure varies frequently.展开更多
Densification of reservoir is an important factor that restricts oil and gas exploration from low porosity and extra-low permeability reservoirs. Carbonate cementation was heavily developed in Chang 6 sandbody, a faci...Densification of reservoir is an important factor that restricts oil and gas exploration from low porosity and extra-low permeability reservoirs. Carbonate cementation was heavily developed in Chang 6 sandbody, a facies of underwater distributary channel in delta front, of Upper Triassic Yanchang Formation in Fuxian area, southern Ordos Basin, and the cementation is one of the major factors that affect quality of reservoir. Based on the macro-microcosmic petrology and geochemistry features, the genesis of densification of carbonate-cemented reservoir was systematically discussed. The carbonate cementation can be classified into endogenous and exogenous, and the essential differences between them are that they were formed in different fluids and in different diagenesis periods. With the aid of identification of thin sections, analyses on electron probe, trace and rare-earth elements, carbon and oxygen isotope, we propose that the endogenous fluid for cementation came from the rock itself during early diagenetic stage. The minerals related to endogenous fluid had good shapes. The reservoir property was enhanced with porosity increasing by 3%-8% because of later dissolution by endogenous fluid. The exogenous fluid might be water combining with CO 2 , likely released from organic matter-rich mudstone. Calcite cement, in form of substrate cementation, was precipitated from the fluid and filled in the remaining pores of sandstones in late diagenetic stage as variations of physical and chemical conditions. The exogenous cement reduced rock porosity, damaged reservoir property, affected some oil enrichment, and seriously caused Chang 6 reservoir densification. Some of the dense layers that formed on top of sandbody could have served as diagenetic traps, and thus the exogenous cementation area could be favorable for oil exploration.展开更多
文摘Efficient iterative unsupervised machine learning involving probabilistic clustering analysis with the expectation-maximization(EM)clustering algorithm is applied to categorize reservoir facies by exploiting latent and observable well-log variables from a clastic reservoir in the Majnoon oilfield,southern Iraq.The observable well-log variables consist of conventional open-hole,well-log data and the computer-processed interpretation of gamma rays,bulk density,neutron porosity,compressional sonic,deep resistivity,shale volume,total porosity,and water saturation,from three wells located in the Nahr Umr reservoir.The latent variables include shale volume and water saturation.The EM algorithm efficiently characterizes electrofacies through iterative machine learning to identify the local maximum likelihood estimates(MLE)of the observable and latent variables in the studied dataset.The optimized EM model developed successfully predicts the core-derived facies classification in two of the studied wells.The EM model clusters the data into three distinctive reservoir electrofacies(F1,F2,and F3).F1 represents a gas-bearing electrofacies with low shale volume(Vsh)and water saturation(Sw)and high porosity and permeability values identifying it as an attractive reservoir target.The results of the EM model are validated using nuclear magnetic resonance(NMR)data from the third studied well for which no cores were recovered.The NMR results confirm the effectiveness and accuracy of the EM model in predicting electrofacies.The utilization of the EM algorithm for electrofacies classification/cluster analysis is innovative.Specifically,the clusters it establishes are less rigidly constrained than those derived from the more commonly used K-means clustering method.The EM methodology developed generates dependable electrofacies estimates in the studied reservoir intervals where core samples are not available.Therefore,once calibrated with core data in some wells,the model is suitable for application to other wells that lack core data.
基金Financial support for this study by the National Basic Research Program of China (973) (No.2006CB 202300) is gratefully acknowledged
文摘The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.
基金funded by Major Projects of National Science and Technology "Large Oil and Gas Fields and CBM development"(Grant No. 2016ZX05027)
文摘1 Introduction As new exploration domain for oil and gas,reservoirs with low porosity and low permeability have become a hotspot in recent years(Li Daopin,1997).With the improvement of technology,low porosity and low
基金supported by the Basic Research Program of China (973 Program, Grant No. 2006CB202308)
文摘In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic clastic reservoirs in the Tazhong area based on a lot of data. Several issues about the hydrocarbon accumulation related to the reservoirs were also discussed. The results were concluded that: the high-value areas of the porosity and permeability of clastic reservoirs were located in the southeast of the Tazhong area; the content of cement (carbonate cement in particular) was the main factor controlling the porosity and permeability of clastic reservoirs; the hydrocarbon distributions of Carboniferous and Silurian clastic reservoirs were closely related to the porosity and permeability; the favorable hydrocarbon accumulation areas of the two sets of strata were located in the southeast of this area, especially in the updip pinch-out area.
基金Supported by the China National Science and Technology Major Project (2016ZX05006-006)
文摘The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41872140, 41821002, 41911530189)the National Major Science and Technology Special Grant (Grant No. 2016ZX05006-007)+2 种基金the Special Fund for Taishan Scholar Project (Grant No. tsqn201909061)the Fundamental Research Funds for the Central Universities (Grant No. 20CX06067A)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (Grant No. 2021QNLM020001)。
文摘Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoirs. Based on a study of the diagenesis of clastic reservoirs in the Bohai Bay Basin, Tarim Basin, and Pearl River Mouth Basin and physical and numerical simulation experiments of fluid-rock interactions, this paper proposed a successive formation model of secondary pores via feldspar dissolution in deeply buried clastic reservoirs, considering the global research progresses in feldspar dissolution in clastic rocks. Feldspar dissolution can occur from shallow open systems to deep-ultra deep closed systems in petroliferous basins, resulting in the successive formation of secondary pores at different diagenetic stages. The successive mechanism includes three aspects. The first aspect is the succession of corrosive fluids that dissolve minerals. Meteoric freshwater dominates at the Earth’s surface and the early diagenetic A stage. Subsequently, organic acids and COformed via kerogen maturation dominate at the early diagenetic B stage to the middle diagenetic stage. COand organic acids formed via hydrocarbon oxidation in hydrocarbon reservoirs dominate at the middle diagenetic B stage to the late diagenetic stage. The second aspect is the successive formation processes of secondary pores via feldspar dissolution. Large-scale feldspar secondary pores identified in deep reservoirs include secondary pores formed at shallow-medium depths that are subsequently preserved into deep layers, as well as secondary pores formed at deep depths. Existing secondary pores in deeply buried reservoirs are the superposition of successively feldspar dissolution caused by different acids at different stages. The third aspect is a successive change in the feldspar alteration pathways and porosity enhancement/preservation effect. Open to semi-open diagenetic systems are developed from the Earth’s surface to the early diagenetic stage, and feldspar dissolution forms enhanced secondary pores. Nearly closed to closed diagenetic systems develop in the middle to late diagenetic stages, and feldspar dissolution forms redistributional secondary pores. The associated cementation causes compression resistance of the rock, which is favorable for the preservation of secondary pores in deep layers. These new insights extend the formation window of secondary pores in petroliferous basins from the traditional acid-oil generation window to a high-temperature gas generation window after hydrocarbon charging. The proposed model explains the genesis of deep-ultra deep high-quality reservoirs with low-permeability, medium-porosity and dominating feldspar secondary pores, which is significant for hydrocarbon exploration in deep to ultra-deep layers.
基金Supported by the National Natural Science Foundation of China(41872113,42172109,42172108)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02)+1 种基金National Key R&D Program Project(2018YFA0702405)China University of Petroleum(Beijing)Research Project(2462020BJRC002,2462020YXZZ020)。
文摘Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.
基金financially supported by the National Natural Science Foundation of China (Grant No. ZX20130157)Science Foundation of China University of Petroleum, Beijing (Grant No. KYJJ2012-01-29)the Key Technologies Research and Development Program of the Chinese Tenth Five-Year Plan (Grant No. 2001BA605A-09)
文摘Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, porosity measurements and fluid inclusion techniques and so on. The sandstones in the fluvial, (fan) delta-front have the best reservoir quality due to the depositional conditions mechanically controlling the petrology configuration and the primary porosity, and chemically influencing the diagenesis and development of secondary pores. The activity of the boundary faults and the sedimentary facies dominate the variation of reservoir quality in different areas and intervals. The reservoir quality varies with the position of sandstone beds in different vertical models of sandstone and mudstone. This mainly arose from the strong cementation or strong dissolution in the sandstone caused by the diagenesis evolution of adjacent mudstone. With higher oil saturation reservoir quality is better because the hydrocarbon charge favors dissolution and restricts cementation. Diagenesis, depositional conditions and tectonic setting are the key controls of reservoir quality in the Shahejie Formation of the Dongying Sag.
基金supported by CNPC Innovation Foundation (07E1002)National High-tech R&D Program of China (863 Program) (2008AA06Z206)the Doctoral Fund of the Ministry of Education of China (20060425004)
文摘The natural gas reservoir beds of different areas in China can be divided into three kinds, clastic natural gas reservoir bed, carbonate natural gas reservoir bed and special natural gas reservoir bed. They have different combination patterns controlled by deposition, diagenesis and tectonism. Our analysis indicates that the natural gas reservoirs are mainly distributed in the Precambrian, Palaeozoic, Mesozoic, and Tertiary-Quaternary. Craton basin, foreland basin and intracontinental rift basin which contain most of natural gas in China have special geological features and favorable accumulation conditions, and will be important exploration areas in the future.
文摘The latest researches reveal that studies on unconventional clastic oil reservoirs in China generally lag far behind those in other countries in respect of content and methodology.This study presents the definition and classification of unconventional oil reservoirs and analyzes the problems in the fine description of unconventional oil reservoirs.The key content of the fine description of unconventional oil reservoirs is summarized from four aspects:fine fracture characterization based on fine structure interpretation,reservoir architecture characterization based on sedimentary facies,characteristics of nanoscale microscopic pore structure of reservoir,and evaluation of source rock and“sweet spot zone”.Finally,this study suggests that development of fine description of unconventional clastic oil reservoirs in the future should focus on rock brittleness analysis and fracture modeling,geophysical characterization of unconventional clastic oil reservoirs,fluid description of tight reservoirs,and physical/numerical simulation experiments of unconventional oil reservoirs.
文摘Geoscientific evidence shows that various parameters such as compaction,buoyancy effect,hydrocarbon maturation,gas effect and tectonic activities control the pore pressure of sub-surface geology.Spatially controlled geoscientific data in the tectonically active areas is significantly useful for robust estimation of pre-drill pore pressure.The reservoir which is tectonically complex and pore pressure is changing frequently that circumference motivated us to conduct this study.The changes in pore pressure have been captured from the fine-scale to the broad scale in the Jaisalmer sub-basin.Pore pressure variation has been distinctly observed in pre-and post-Jurassic age based on the current study.Post-stack seismic inversion study was conducted to capturing the variation of pore pressure.Analysis of low-frequency spectrum and integrated interval velocity model provided a detailed feature of pore pressure in each compartment of the study area.Pore pressure estimated from well log data was correlated with seismic inversion based result.Based on the current study one well has been proposed where pore pressure was estimated and two distinguished trends are identified in the study zone.The approaches of the current study were analysed thoroughly and it will be highly useful in complex reservoir condition where pore pressure varies frequently.
基金supported by National Science and Technology Major Project (Grant No. 2011ZX05002006)Ministry of Science and Technology Project SINOPEC (Grant No. P11079)
文摘Densification of reservoir is an important factor that restricts oil and gas exploration from low porosity and extra-low permeability reservoirs. Carbonate cementation was heavily developed in Chang 6 sandbody, a facies of underwater distributary channel in delta front, of Upper Triassic Yanchang Formation in Fuxian area, southern Ordos Basin, and the cementation is one of the major factors that affect quality of reservoir. Based on the macro-microcosmic petrology and geochemistry features, the genesis of densification of carbonate-cemented reservoir was systematically discussed. The carbonate cementation can be classified into endogenous and exogenous, and the essential differences between them are that they were formed in different fluids and in different diagenesis periods. With the aid of identification of thin sections, analyses on electron probe, trace and rare-earth elements, carbon and oxygen isotope, we propose that the endogenous fluid for cementation came from the rock itself during early diagenetic stage. The minerals related to endogenous fluid had good shapes. The reservoir property was enhanced with porosity increasing by 3%-8% because of later dissolution by endogenous fluid. The exogenous fluid might be water combining with CO 2 , likely released from organic matter-rich mudstone. Calcite cement, in form of substrate cementation, was precipitated from the fluid and filled in the remaining pores of sandstones in late diagenetic stage as variations of physical and chemical conditions. The exogenous cement reduced rock porosity, damaged reservoir property, affected some oil enrichment, and seriously caused Chang 6 reservoir densification. Some of the dense layers that formed on top of sandbody could have served as diagenetic traps, and thus the exogenous cementation area could be favorable for oil exploration.