Characterisation and understanding of the stressestrainepermeability behaviour of a clay host rock during damage and recompaction are essential for prediction of excavation damaged zone and for assessment of its impac...Characterisation and understanding of the stressestrainepermeability behaviour of a clay host rock during damage and recompaction are essential for prediction of excavation damaged zone and for assessment of its impact on the repository safety. This important issue has been experimentally studied in triaxial compression tests on the Callovo-Oxfordian clay rock in this study. The samples were sequentially loaded by(1) hydrostatic precompaction to close up sampling-induced microcracks,(2)applying deviatoric stresses to determine damage and permeability changes, and(3) recompression along different loading paths to examine reversibility of the damage. The critical stress conditions at the onset of dilatancy, permeability percolation, failure strength, and residual strength are determined. An empirical model is established for fracturing-induced permeability by considering the effects of connectivity and conductivity of microcracks. The cubic law is validated for the variation of permeability of connected fractures with closure. The experiments and results are also presented and discussed.展开更多
In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investi...In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper,展开更多
Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:...Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.展开更多
This paper examines the effective stress in indurated clay rock theoretically and experimentally.A stress concept is derived from the analysis of the microstructure and of the pore water in the highly-indurated Callov...This paper examines the effective stress in indurated clay rock theoretically and experimentally.A stress concept is derived from the analysis of the microstructure and of the pore water in the highly-indurated Callovo-Oxfordian and Opalinus clay rocks,and subsequently validated by various experiments performed on these claystones.The concept suggests that the interparticle or effective stress in a dense clay ewater system is transferred through both the adsorbed interparticle pore water in narrow pores and the solidesolid contact between non-clay mineral grains.The experiments show that the adsorbed pore water in the claystones is capable of bearing deviatoric effective stresses up to the failure strength.The applied stresses are for the most part or even totally transferred by the bound pore water,i.e.the swelling pressure in the interparticle bound pore water is almost equivalent to the effective stress.This stress concept provides a reasonable view to the nature of the effective stress in argillaceous rock and forms the fundamental basis for studies of the hydro-mechanical properties and processes in clay formations.展开更多
The geological and physico-mechanical properties characterization of deep soft rocks is one of the critical scientific issues for deep soft rock engineering. In the present study, X-ray diffraction(XRD) analysis,scann...The geological and physico-mechanical properties characterization of deep soft rocks is one of the critical scientific issues for deep soft rock engineering. In the present study, X-ray diffraction(XRD) analysis,scanning electron microscope(SEM), and mercury intrusion porosimetry experiments were carried out to investigate the mineral compositions, microstructure and porosity characteristics of the 13 claybearing soft rock samples collected from a deep coal mine in China. Water vapor absorption and uniaxial compressive experiments were also performed to examine water absorption characteristics and waterinduced strength degradation effect of the investigated deep soft rock samples. The results show that the dominant mineral components in mudstone, coarse sandstone and fine sandstone samples were calcite, quartz and clay respectively. The contents of clay minerals in all samples were relatively high and ranged from 12.3%(N-4) to 56.5%(XS-1). Water vapor absorption processes of all the soft rock samples follow an exponential law which is very similar to the water vapor absorption behavior of conglomerate samples reported in our earlier study. Correlation analyses also suggested that there were good positive correlation relationships between water absorptivity and clay minerals for both mudstone and sandstone samples. Furthermore, it was found that vapor absorption was not correlated with the porosity for mudstone, however, positive correlation relationship was found between them for sandstone. Correlation analysis between UCS, modulus of elasticity and water content demonstrated that both of them tend to decrease with the increase of their water content due to water absorption.展开更多
1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of...1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of salt layers and interbedded facies.The latter consists mainly of mudstones,and mudstone-rich conglomerate.The mineralogy and geochemistry of salt-bearing beds and展开更多
On the basis of the mechanism study of injecting clay grouts into overlying strata, the clay grouts are researched in greater detail from three aspects. The flowing state of clay grouts in the strata——the pattern of...On the basis of the mechanism study of injecting clay grouts into overlying strata, the clay grouts are researched in greater detail from three aspects. The flowing state of clay grouts in the strata——the pattern of different direction flowing around a point source is advanced and the flowing equation is put forward which is correspond with experiment result, and the corresponding mechanical model is set up which has its formulistic study, and the function of clay grouts is also discussed after the water in it has been lost, at the same time the concept of similar rock in effective supporting zone is given. It would draw great positive inspiration from what studied in this paper for studying on drawing down the surface subsidence by injecting.展开更多
The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked sample...The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under rel- evant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 ℃ to 90℃. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10^-19 to 10^-21 m^2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.展开更多
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ...Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.展开更多
Dealing with large-scale deformations in soft-rock tunnels is a very important issue in soft-rock tunnel engineering. The mechanism of this large-scale deformation is closely related to the physical and chemical prope...Dealing with large-scale deformations in soft-rock tunnels is a very important issue in soft-rock tunnel engineering. The mechanism of this large-scale deformation is closely related to the physical and chemical properties of soft rock, interaction between soft rock and water, and interaction between soft rock and gas contained in soft rock. In order to gain a better predictive understanding of the governing principles associated with this phenomenon, we used experimental and theoretical methods to study the effects of point defect on physical and chemical properties of soft rock and mechanism of interaction between water(gas) and soft rock. Firstly, we calculated the impurity formation energies and transition energy levels of defects by using the first-principle calculation, the results showed the microscopic mechanism of defects substitution in kaolinite and effects of defects on the structure of kaolinite. Moreover,comparing the experimental and theoretical results, we found the mechanism of interaction between water and soft rock. The results show that water is one of the most important factors which can induce various kinds of geological disasters. At last, the interaction between soft rock and surrounding gas as CO2, CH4 and CO is disused, the influence of surrounding gas on soft rock should not be ignored.展开更多
A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure...A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure. The results show that the water absorbing capacity of rock with a certain pressure is larger than that of rock without pressure: however, the relationship between the water absorbing percentage and the time can be expressed by w(t) = a(l - e^-bt). In hi-logarithmic coordinates, the hydrophilic relationship with time in tests with pressure could be characterized by linearity, while they present concave or convex in tests without pressure. Based on the hypothesis that each influential factor is irrelevant and they have a linear correlation with the water absorbing capacity, we calculated the weight coefficient of each factor according to experimental results under different conditions. The calculations demonstrate that the effec- tive porosity, content of smectite and kaolinite are all positively correlated with the water absorption capacity of rock; meanwhile, the fractal dimension of the effective pores presents a negative correlation with the water absorption capacity of rock. The water absorption capacity with pressure increases with increasing illite, chlorite and chlorite/smectite formation and a decrease in illite/smectite formation and the fractal dimension of the effective pores, while it is opposite in tests without pressure. The weight coefficient of smectite is smallest among positive factors, and the fractal dimension of the effective pores is the smallest amongst the negative factors.展开更多
基金co-funded by the German Federal Ministry of Economics and Technology(BMWi)under contract number 02E10377by the European Commission(EC)as the part of the Euratom’s Seventh Framework Programme FP7/2007-2013 under grant agreement No.323273 for the DOPAS project
文摘Characterisation and understanding of the stressestrainepermeability behaviour of a clay host rock during damage and recompaction are essential for prediction of excavation damaged zone and for assessment of its impact on the repository safety. This important issue has been experimentally studied in triaxial compression tests on the Callovo-Oxfordian clay rock in this study. The samples were sequentially loaded by(1) hydrostatic precompaction to close up sampling-induced microcracks,(2)applying deviatoric stresses to determine damage and permeability changes, and(3) recompression along different loading paths to examine reversibility of the damage. The critical stress conditions at the onset of dilatancy, permeability percolation, failure strength, and residual strength are determined. An empirical model is established for fracturing-induced permeability by considering the effects of connectivity and conductivity of microcracks. The cubic law is validated for the variation of permeability of connected fractures with closure. The experiments and results are also presented and discussed.
基金funded by the German Federal Ministry for Economic Affairs and Energy(BMWi)under contract number02E10377
文摘In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper,
基金funding by the German Federal Ministry of Economics and Technology (BMWi) under contract No.02E10377the French National Radioactive Waste Management Agency (Andra)
文摘Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.
基金funded by the German Federal Ministry of Economics and Technology (BMWi) under contract 02E10377
文摘This paper examines the effective stress in indurated clay rock theoretically and experimentally.A stress concept is derived from the analysis of the microstructure and of the pore water in the highly-indurated Callovo-Oxfordian and Opalinus clay rocks,and subsequently validated by various experiments performed on these claystones.The concept suggests that the interparticle or effective stress in a dense clay ewater system is transferred through both the adsorbed interparticle pore water in narrow pores and the solidesolid contact between non-clay mineral grains.The experiments show that the adsorbed pore water in the claystones is capable of bearing deviatoric effective stresses up to the failure strength.The applied stresses are for the most part or even totally transferred by the bound pore water,i.e.the swelling pressure in the interparticle bound pore water is almost equivalent to the effective stress.This stress concept provides a reasonable view to the nature of the effective stress in argillaceous rock and forms the fundamental basis for studies of the hydro-mechanical properties and processes in clay formations.
基金provided by the National Natural Science Foundation of China (No. 51134005)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130023120016)the Fundamental Research Funds for the Central Universities of China (No. 2010QL07)
文摘The geological and physico-mechanical properties characterization of deep soft rocks is one of the critical scientific issues for deep soft rock engineering. In the present study, X-ray diffraction(XRD) analysis,scanning electron microscope(SEM), and mercury intrusion porosimetry experiments were carried out to investigate the mineral compositions, microstructure and porosity characteristics of the 13 claybearing soft rock samples collected from a deep coal mine in China. Water vapor absorption and uniaxial compressive experiments were also performed to examine water absorption characteristics and waterinduced strength degradation effect of the investigated deep soft rock samples. The results show that the dominant mineral components in mudstone, coarse sandstone and fine sandstone samples were calcite, quartz and clay respectively. The contents of clay minerals in all samples were relatively high and ranged from 12.3%(N-4) to 56.5%(XS-1). Water vapor absorption processes of all the soft rock samples follow an exponential law which is very similar to the water vapor absorption behavior of conglomerate samples reported in our earlier study. Correlation analyses also suggested that there were good positive correlation relationships between water absorptivity and clay minerals for both mudstone and sandstone samples. Furthermore, it was found that vapor absorption was not correlated with the porosity for mudstone, however, positive correlation relationship was found between them for sandstone. Correlation analysis between UCS, modulus of elasticity and water content demonstrated that both of them tend to decrease with the increase of their water content due to water absorption.
基金supported by the National Basic Research Program of China (2011CB403004)the National Natural Science Foundation of China (41303029)
文摘1 Introduction Geological studies established on several sections in Lanping-Simao basin have shown that the salt-bearing strata of Mengyejing formation(Yunlong Fm.in Lanping basin)are constituted by an alternation of salt layers and interbedded facies.The latter consists mainly of mudstones,and mudstone-rich conglomerate.The mineralogy and geochemistry of salt-bearing beds and
文摘On the basis of the mechanism study of injecting clay grouts into overlying strata, the clay grouts are researched in greater detail from three aspects. The flowing state of clay grouts in the strata——the pattern of different direction flowing around a point source is advanced and the flowing equation is put forward which is correspond with experiment result, and the corresponding mechanical model is set up which has its formulistic study, and the function of clay grouts is also discussed after the water in it has been lost, at the same time the concept of similar rock in effective supporting zone is given. It would draw great positive inspiration from what studied in this paper for studying on drawing down the surface subsidence by injecting.
基金co-funded by the European Commission (EC) as part of the sixth Euratom research and training Framework Programme (FP6) on nuclear energy under contract FP6-036449by the German Federal Ministry of Economics and Technology (BMWi) under contracts 02E10045 and 02E10377
文摘The sealing behavior of fractures in clay rocks for deep disposal of radioactive waste has been comprehensively investigated at the GRS laboratory. Various sealing experiments were performed on strongly cracked samples of different sizes from the Callovo-Oxfordian argillite and the Opalinus clay under rel- evant repository conditions. The fractured samples were compacted and flowed through with gas or synthetic pore-water under confining stresses up to 18 MPa and elevated temperatures from 20 ℃ to 90℃. Sealing of fractures was quantified by measurements of their closure and permeability. Under the applied thermo-hydro-mechanical (THM) conditions, significant fracture closure and permeability decrease to very low levels of 10^-19 to 10^-21 m^2 were observed within time periods of months to years. The properties of the resealed claystones are comparable with those of the intact rock mass. All test results suggest high sealing potentials of the studied claystones.
基金partially supported by program for the New Century Excellent Talents in University (No. NCET-08-0833)the National Natural Science Foundation of China (No. 41040027)the Special Fund of Basic Research and Operating Expenses of China University of Mining and Technology, Beijing
文摘Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0656)the National Natural Science Foundation of China (Nos. 40972196 and 41172263)
文摘Dealing with large-scale deformations in soft-rock tunnels is a very important issue in soft-rock tunnel engineering. The mechanism of this large-scale deformation is closely related to the physical and chemical properties of soft rock, interaction between soft rock and water, and interaction between soft rock and gas contained in soft rock. In order to gain a better predictive understanding of the governing principles associated with this phenomenon, we used experimental and theoretical methods to study the effects of point defect on physical and chemical properties of soft rock and mechanism of interaction between water(gas) and soft rock. Firstly, we calculated the impurity formation energies and transition energy levels of defects by using the first-principle calculation, the results showed the microscopic mechanism of defects substitution in kaolinite and effects of defects on the structure of kaolinite. Moreover,comparing the experimental and theoretical results, we found the mechanism of interaction between water and soft rock. The results show that water is one of the most important factors which can induce various kinds of geological disasters. At last, the interaction between soft rock and surrounding gas as CO2, CH4 and CO is disused, the influence of surrounding gas on soft rock should not be ignored.
文摘A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure. The results show that the water absorbing capacity of rock with a certain pressure is larger than that of rock without pressure: however, the relationship between the water absorbing percentage and the time can be expressed by w(t) = a(l - e^-bt). In hi-logarithmic coordinates, the hydrophilic relationship with time in tests with pressure could be characterized by linearity, while they present concave or convex in tests without pressure. Based on the hypothesis that each influential factor is irrelevant and they have a linear correlation with the water absorbing capacity, we calculated the weight coefficient of each factor according to experimental results under different conditions. The calculations demonstrate that the effec- tive porosity, content of smectite and kaolinite are all positively correlated with the water absorption capacity of rock; meanwhile, the fractal dimension of the effective pores presents a negative correlation with the water absorption capacity of rock. The water absorption capacity with pressure increases with increasing illite, chlorite and chlorite/smectite formation and a decrease in illite/smectite formation and the fractal dimension of the effective pores, while it is opposite in tests without pressure. The weight coefficient of smectite is smallest among positive factors, and the fractal dimension of the effective pores is the smallest amongst the negative factors.