Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal...Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.展开更多
This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed i...This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed in the 2010s and 2020s in Fujian Province. In order to meet the requirements of high efficiency and envirofimental protection, the usage of clean coal technologies for power generating will be an inevitable option and the technologies will occupy the important position in Fujian power industry. This paper puts forward the staged targets and measures of developing and utilizing clean coal technologies, suggests that all government depotments related should give support and guarantee in policies and conditions, and welcome technical and economic cooperation at home and abroad, which is good for co-development of both parties.展开更多
The ultra-supercritical pressure coal-fired power-generation technology (USCT) isa mature, advanced and efficient power generation technology in the world. Comparisonsamong several principal clean coal power-generatio...The ultra-supercritical pressure coal-fired power-generation technology (USCT) isa mature, advanced and efficient power generation technology in the world. Comparisonsamong several principal clean coal power-generation technologies show that USCT withpollutant-emission control equipment is superior to others in efficiency, capacity, reliability,investment and environment protection etc. Analyzing the main problems existing in thermalpower industry, it is concluded that the USCT is the preferential choice for China to developclean coal power-generation technology at present. Considering the foundation of thepower industry, the manufacturing industry for power generating equipment and otherrelated industries, it is concluded that China has satisfied the qualifications to develop USCT.展开更多
This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development ...This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development in Chinacoal industry, progress and perspective of clean coal power generation technology in China, as well as application andmarket of flue gas desulphurization technology in coal-fired power plants.[展开更多
The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification.As an alt...The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification.As an alternative to combustion pro-cesses,gasification offers increased efficiency,lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses.In order to select the most optimal lignite for the purpose of gasification,it is necessary to determine coal reactivity,the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers.This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700,800 and 900℃;the samples come from an open pit lignite mine in the southwest of Poland.The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields,gas composition,carbon conversion rate and chars reactivity.展开更多
Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market p...Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.展开更多
This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mine...This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.展开更多
Emission of large amount of SO2 from combustion of liigh sulfur ctal causes serious envitonmcntai pollution. Pre-combustion desunrization of high sulfur coal has become a necessity.Thts paper reports test results of f...Emission of large amount of SO2 from combustion of liigh sulfur ctal causes serious envitonmcntai pollution. Pre-combustion desunrization of high sulfur coal has become a necessity.Thts paper reports test results of fine coal dcaulfurization with different flotation technology and theeffect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shanwas processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08%to 0. 84%, with 72. 22% recovery ofcomhustiblc matter in clean coal. The coneept of Desulfuriza tion Efficiency Index E for comprehensive evaluation of desumirhation process is proposed, whichis deffeed as the product of the ratio of sulfur content reduction of clean ctal and the recovery ofcomhustihle matters.展开更多
As one of promising clean coal technologies used to reduce pollutant emission and CO2 discharge, co gasification has been extensively investigated. In this paper, a new co-gasification technology using coal and natura...As one of promising clean coal technologies used to reduce pollutant emission and CO2 discharge, co gasification has been extensively investigated. In this paper, a new co-gasification technology using coal and natural gas was developed. The distinct advantages of this technology are the excellent fuel flexibility and the availability to establish the gasifier by reconstructing the blast furnace or similar shaft furnace. Based on the concept of the new co-gasification technology, lab-scale experiments and modeling study were carried out. The obtained results indicate that gasification is undertaken at ideal thermodynamic environment where quasi-equilibrium could be reached without catalysts. The modeling results are in agreement with experimental data, demonstrating the validity of the model and that Aspen Plus is a useful tool for the analysis of the co-gasification process. Furthermore, the effect of major operation parameters, including oxygen flow rate and steam flow rate, on co-gasification process was investigated using the developed model.展开更多
The world is endowed with a tremendous amount of coal resources,which are unevenly distributed in a few nations.While sustainable energy resources are being developed and deployed,fossil fuels dominate the current wor...The world is endowed with a tremendous amount of coal resources,which are unevenly distributed in a few nations.While sustainable energy resources are being developed and deployed,fossil fuels dominate the current world energy consumption.Thus,low-carbon clean technologies,like underground coal gasification(UCG),ought to play a vital role in energy supply and ensuring energy security in the foreseeable future.This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production.It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG.While research is ongoing in multiple coal-rich nations,China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments.A variety of coal ranks were tested in UCG for enhanced hydrogen output,and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized.Moreover,it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world.Furthermore,governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.展开更多
基金Acknowledgements The authors gratefully acknowledge the funding support from the National Key Basic Research Program of China (2013CB228500), the National Natural Science Foundation of Chi- na (71203119), and the Advanced Coal Technology Consortium of CERC (2016YFE0102500).
文摘Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.
文摘This paper is based on the existing status and development prediction of Fujian power industry, and describes that the structure of energy sources for generating power which will mainly use coal, will not be changed in the 2010s and 2020s in Fujian Province. In order to meet the requirements of high efficiency and envirofimental protection, the usage of clean coal technologies for power generating will be an inevitable option and the technologies will occupy the important position in Fujian power industry. This paper puts forward the staged targets and measures of developing and utilizing clean coal technologies, suggests that all government depotments related should give support and guarantee in policies and conditions, and welcome technical and economic cooperation at home and abroad, which is good for co-development of both parties.
文摘The ultra-supercritical pressure coal-fired power-generation technology (USCT) isa mature, advanced and efficient power generation technology in the world. Comparisonsamong several principal clean coal power-generation technologies show that USCT withpollutant-emission control equipment is superior to others in efficiency, capacity, reliability,investment and environment protection etc. Analyzing the main problems existing in thermalpower industry, it is concluded that the USCT is the preferential choice for China to developclean coal power-generation technology at present. Considering the foundation of thepower industry, the manufacturing industry for power generating equipment and otherrelated industries, it is concluded that China has satisfied the qualifications to develop USCT.
文摘This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development in Chinacoal industry, progress and perspective of clean coal power generation technology in China, as well as application andmarket of flue gas desulphurization technology in coal-fired power plants.[
文摘The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification.As an alternative to combustion pro-cesses,gasification offers increased efficiency,lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses.In order to select the most optimal lignite for the purpose of gasification,it is necessary to determine coal reactivity,the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers.This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700,800 and 900℃;the samples come from an open pit lignite mine in the southwest of Poland.The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields,gas composition,carbon conversion rate and chars reactivity.
文摘Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.
文摘This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.
文摘Emission of large amount of SO2 from combustion of liigh sulfur ctal causes serious envitonmcntai pollution. Pre-combustion desunrization of high sulfur coal has become a necessity.Thts paper reports test results of fine coal dcaulfurization with different flotation technology and theeffect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shanwas processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08%to 0. 84%, with 72. 22% recovery ofcomhustiblc matter in clean coal. The coneept of Desulfuriza tion Efficiency Index E for comprehensive evaluation of desumirhation process is proposed, whichis deffeed as the product of the ratio of sulfur content reduction of clean ctal and the recovery ofcomhustihle matters.
文摘As one of promising clean coal technologies used to reduce pollutant emission and CO2 discharge, co gasification has been extensively investigated. In this paper, a new co-gasification technology using coal and natural gas was developed. The distinct advantages of this technology are the excellent fuel flexibility and the availability to establish the gasifier by reconstructing the blast furnace or similar shaft furnace. Based on the concept of the new co-gasification technology, lab-scale experiments and modeling study were carried out. The obtained results indicate that gasification is undertaken at ideal thermodynamic environment where quasi-equilibrium could be reached without catalysts. The modeling results are in agreement with experimental data, demonstrating the validity of the model and that Aspen Plus is a useful tool for the analysis of the co-gasification process. Furthermore, the effect of major operation parameters, including oxygen flow rate and steam flow rate, on co-gasification process was investigated using the developed model.
基金funded by PetroChina Research Institute of Petroleum Exploration&DevelopmentThe support of Department of Chemical and Petroleum Engineering,University of Calgary and Reservoir Simulation Group is gratefully acknowledged+1 种基金supported by NSERC/Energi Simulation,AITF(iCore),IBM Thomas J.Watson Research Center,and the Energi Simulation/Frank and Sarah Meyer Collaboration Centre for Visualization and Simulationsupport provided by WestGrid and Compute Canada Calcul Canada.
文摘The world is endowed with a tremendous amount of coal resources,which are unevenly distributed in a few nations.While sustainable energy resources are being developed and deployed,fossil fuels dominate the current world energy consumption.Thus,low-carbon clean technologies,like underground coal gasification(UCG),ought to play a vital role in energy supply and ensuring energy security in the foreseeable future.This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production.It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG.While research is ongoing in multiple coal-rich nations,China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments.A variety of coal ranks were tested in UCG for enhanced hydrogen output,and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized.Moreover,it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world.Furthermore,governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.