Dust accumulation on photovoltaic (PV) panels degrades PV panels’ performance;leading to decreased power output and consequently high cost per generated kilowatt. Research addressing the severity of dust accumulation...Dust accumulation on photovoltaic (PV) panels degrades PV panels’ performance;leading to decreased power output and consequently high cost per generated kilowatt. Research addressing the severity of dust accumulation on PV panels has been ongoing since the 1940s, but proposed solutions have tended to increase the cost of PV systems either from oversizing or from cleaning the system. The objective of this work, therefore, is to design and implement a low-cost affordable automated PV panel dust cleaning system for use in rural communities of Sub-Saharan Africa (SSA);where financial resources are limited and significantly strained in meeting livelihood activities. Complete design and implementation details of a prototype system are provided for easy replication and capitalization on PV systems for sustainable energy needs. The system detects dust based on the innovative use of light-dependent resistors. Testing and observation of the system in operational mode reveal satisfactory performance;measured parameters quantify a power output increase of 33.76% as a result of cleaning dust off the PV panel used in the study.展开更多
Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates.In this study,non-woven needle felt f...Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates.In this study,non-woven needle felt filter bags with and without a film coating material have been analyzed considering different geometries(different number N of pairs of pleated filter bag sides)in the frame of dedicated low-pressure pulsed-jet cleaning experiments.The flow structure inside the bag and the response characteristics of its wall have also been analyzed numerically through a computational fluid-dynamics/structural-dynamics(CFD-CSD)unidirectional fluid-solid coupling method.As shown by the experiments,the peak pressure(P_(0))on the wall of the filter bag with N=8 and 12 is higher,which indicates dust can be removed more effectively in these cases.The peak pressure on the wall increases first and then decreases along the direction of the bag length,while the peak pressure of the pleated filter bag with nonwoven needled felt film coating is greater than that without film coating.A comprehensive analysis of the time variation of acceleration,deformation,strain,stress and other factors,has led to the conclusion that the pleated filter bag with N=12 would be the optimal choice.展开更多
文摘Dust accumulation on photovoltaic (PV) panels degrades PV panels’ performance;leading to decreased power output and consequently high cost per generated kilowatt. Research addressing the severity of dust accumulation on PV panels has been ongoing since the 1940s, but proposed solutions have tended to increase the cost of PV systems either from oversizing or from cleaning the system. The objective of this work, therefore, is to design and implement a low-cost affordable automated PV panel dust cleaning system for use in rural communities of Sub-Saharan Africa (SSA);where financial resources are limited and significantly strained in meeting livelihood activities. Complete design and implementation details of a prototype system are provided for easy replication and capitalization on PV systems for sustainable energy needs. The system detects dust based on the innovative use of light-dependent resistors. Testing and observation of the system in operational mode reveal satisfactory performance;measured parameters quantify a power output increase of 33.76% as a result of cleaning dust off the PV panel used in the study.
基金This study was financially supported by Anhui Provincial Scientific and Technological Major Project(Grant No.18030801109).
文摘Pulsed-jet cleaning is recognized as the most efficient method to regenerate bag dust collectors traditionally used in industrial processes to control the emission of particulates.In this study,non-woven needle felt filter bags with and without a film coating material have been analyzed considering different geometries(different number N of pairs of pleated filter bag sides)in the frame of dedicated low-pressure pulsed-jet cleaning experiments.The flow structure inside the bag and the response characteristics of its wall have also been analyzed numerically through a computational fluid-dynamics/structural-dynamics(CFD-CSD)unidirectional fluid-solid coupling method.As shown by the experiments,the peak pressure(P_(0))on the wall of the filter bag with N=8 and 12 is higher,which indicates dust can be removed more effectively in these cases.The peak pressure on the wall increases first and then decreases along the direction of the bag length,while the peak pressure of the pleated filter bag with nonwoven needled felt film coating is greater than that without film coating.A comprehensive analysis of the time variation of acceleration,deformation,strain,stress and other factors,has led to the conclusion that the pleated filter bag with N=12 would be the optimal choice.