Tectonic movements and climate changes are two main controllers on the development of landform. In order to reconstruct the history of the evolution of the landform in the Fenhe drainage basin d...Tectonic movements and climate changes are two main controllers on the development of landform. In order to reconstruct the history of the evolution of the landform in the Fenhe drainage basin during middle-late Quaternary comprehensively, this paper has provided a variety of geomorphological and geologic evidences to discuss how tectonic movements and climate changes worked together to influence the landform processes. According to the features of the lacustrine and alluvial terraces in this drainage basin, it is deduced that it was the three tectonic uplifts that resulted in the three great lake-regressions with an extent of about 40-60 m and the formation of the three lacustrine terraces. The times when the tectonic uplifts took place are 0.76 MaBP, 0.55 MaBP and 0.13 MaBP respectively, synchronous with the formation of paleosol units S 8 , S 5 and S 1 respectively. During the intervals between two tectonic uplifts when tectonic movement was very weak, climate changes played a major role in the evolution of the paleolakes and caused frequent fluctuations of lake levels. The changes of the features of lacustrine sediment in the grabens show the extent of such fluctuations of lake level is about 2-3 m.展开更多
In this paper, we use CEVSA, a process-based model, which has been validated on regional and global scales, to explore the temporal and spatial patterns of Net Primary Productivity (NPP) a...In this paper, we use CEVSA, a process-based model, which has been validated on regional and global scales, to explore the temporal and spatial patterns of Net Primary Productivity (NPP) and its responses to interannual climate fluctuations in China's terrestrial ecosystems over the period 1981-1998. The estimated results suggest that, in this study period, the averaged annual total NPP is about 3.09 Gt C/yr -1 and average NPP is about 342 g C/m 2 . The results also showed that the precipitation was the key factor determining the spatial distribution and temporal trends of NPP. Temporally, the total NPP exhibited a slowly increasing trend. In some ENSO years (e.g. 1982, 1986, 1997) NPP decreased clearly compared to the previous year, but the relationship between ENSO and NPP is complex due to the integrated effects of monsoons and regional differentiation. Spatially, the relatively high NPP occurred at the middle high latitudes, the low latitudes and the lower appeared at the middle latitudes. On national scale, precipitation is the key control factor on NPP variations and there exists a weak correlation between NPP and temperature, but regional responses are greatly different.展开更多
基金National Natural Science Foundation of China No.40071016
文摘Tectonic movements and climate changes are two main controllers on the development of landform. In order to reconstruct the history of the evolution of the landform in the Fenhe drainage basin during middle-late Quaternary comprehensively, this paper has provided a variety of geomorphological and geologic evidences to discuss how tectonic movements and climate changes worked together to influence the landform processes. According to the features of the lacustrine and alluvial terraces in this drainage basin, it is deduced that it was the three tectonic uplifts that resulted in the three great lake-regressions with an extent of about 40-60 m and the formation of the three lacustrine terraces. The times when the tectonic uplifts took place are 0.76 MaBP, 0.55 MaBP and 0.13 MaBP respectively, synchronous with the formation of paleosol units S 8 , S 5 and S 1 respectively. During the intervals between two tectonic uplifts when tectonic movement was very weak, climate changes played a major role in the evolution of the paleolakes and caused frequent fluctuations of lake levels. The changes of the features of lacustrine sediment in the grabens show the extent of such fluctuations of lake level is about 2-3 m.
基金Knowledge Innovation Project of IGSNRR CAS No.CXIOG-E01-02-04
文摘In this paper, we use CEVSA, a process-based model, which has been validated on regional and global scales, to explore the temporal and spatial patterns of Net Primary Productivity (NPP) and its responses to interannual climate fluctuations in China's terrestrial ecosystems over the period 1981-1998. The estimated results suggest that, in this study period, the averaged annual total NPP is about 3.09 Gt C/yr -1 and average NPP is about 342 g C/m 2 . The results also showed that the precipitation was the key factor determining the spatial distribution and temporal trends of NPP. Temporally, the total NPP exhibited a slowly increasing trend. In some ENSO years (e.g. 1982, 1986, 1997) NPP decreased clearly compared to the previous year, but the relationship between ENSO and NPP is complex due to the integrated effects of monsoons and regional differentiation. Spatially, the relatively high NPP occurred at the middle high latitudes, the low latitudes and the lower appeared at the middle latitudes. On national scale, precipitation is the key control factor on NPP variations and there exists a weak correlation between NPP and temperature, but regional responses are greatly different.