Based on the temperature indices established by expert group on the detection,monitoring and indices of climate change,spatial characteristics of temperature indices from 278 meteorological stations in China during 19...Based on the temperature indices established by expert group on the detection,monitoring and indices of climate change,spatial characteristics of temperature indices from 278 meteorological stations in China during 1961-2008 were studied.The results showed that day number of freezing point went down gradually from northwest to southeast,as well as the most regions of China.Day number of summer was mostly over 50 d in China and over 100 d in Eastern China except for the most part of Northeast China,while there was an increase trend in the most regions of China.Growth period was generally above 150 d in China and increased with the decrease of latitude from north to south,while the trend coefficient of growth period in 236 stations was positive.展开更多
Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960–2008. Several indices are defined for describing the key features of...Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960–2008. Several indices are defined for describing the key features of a seasonal cycle, including local winter/summer (LW/LS) periods and local spring/autumn phase (LSP/LAP). The Ensemble Empirical Mode Decomposition method is applied to determine the indices for each year. The LW period was found to have shortened by 2–6 d (10 yr)-1, mainly due to an earlier end to winter conditions, with the LW mean temperature having increased by 0.2°C–0.4°C (10 yr)?1, over almost all of China. Records of the most severe climate extremes changed less than more typical winter conditions did. The LS period was found to have lengthened by 2–4 d (10 yr)?1, due to progressively earlier onsets and delayed end dates of the locally defined hot period. The LS mean temperature increased by 0.1°C–0.2°C (10 yr)-1 in most of China, except for a region in southern China centered on the mid-lower reaches of the Yangtze River. In contrast to the winter cases, the warming trend in summer was more prominent in the most extreme records than in those of more typical summer conditions. The LSP was found to have advanced significantly by about 2 d (10 yr)-1 in most of China. Changes in the autumn phase were less prominent. Relatively rapid changes happened in the 1980s for most of the regional mean indices dealing with winter and in the 1990s for those dealing with summer.展开更多
The temperature and soil moisture conditions as well as vegetation patterns were studied to describe the habitat and to model the life cycle of Melanoplusfrigidus, a true alpine grasshopper of the Scandes. In the low ...The temperature and soil moisture conditions as well as vegetation patterns were studied to describe the habitat and to model the life cycle of Melanoplusfrigidus, a true alpine grasshopper of the Scandes. In the low alpine belt of the Norwegian Scandes the species colonizes only the warmest microhabitats with maximum soil surface temperatures of 31℃. Vegetation of these habitats consists of shrub-rich heath dominated by Vaccinium myrtillus and Calluna vulgaris. Using continuously measured temperature data, the development times for four different seasons were modeled and related to field observations. The maximum delay of adult molt was estimated to amount to 3 weeks, the delay being determined by the variation in spring temperature conditions between different years. The possibilities of using M. frigidus as an indicator organism of climate change effects on alpine zoo-coenoses of the Scandes are discussed.展开更多
The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the ...The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the winter period and during grazing, viable cells of faecal coliforms and faecal enterococci were detected only in the first 10 cm below ground, while,after the winter period and before the new seasonal grazing, a lower number of viable cells of both faecal indicators was detected only in some of the investigated soil profiles, and within the first 5 cm. Taking into consideration the results of specific investigations, we hypothesise that the non-uniform spatial distribution of grass roots within the studied soil can play an important role in influencing this phenomenon, while several abiotic factors do not play any significant role. Taking into account the local trend in the increase of air temperature, a different distribution of microbial pollution over time is expected in spring waters, in future climate scenarios. The progressive increase in air temperature will cause a progressive decrease in freeze/thaw cycles at higher altitudes, minimising cold shocks on microbial cells, and causing spring water pollution also during winter.展开更多
文摘Based on the temperature indices established by expert group on the detection,monitoring and indices of climate change,spatial characteristics of temperature indices from 278 meteorological stations in China during 1961-2008 were studied.The results showed that day number of freezing point went down gradually from northwest to southeast,as well as the most regions of China.Day number of summer was mostly over 50 d in China and over 100 d in Eastern China except for the most part of Northeast China,while there was an increase trend in the most regions of China.Growth period was generally above 150 d in China and increased with the decrease of latitude from north to south,while the trend coefficient of growth period in 236 stations was positive.
基金supported bythe National Basic Research Program of China (Grant No.2009CB421401)Qian was supported by the National Natural Science Foundation of China (Grant No. 41005039)The work of Xia and Zhou was partly supported by astrategic research grant from the City University of HongKong (Grant No. SRG-Fd 7002505)
文摘Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960–2008. Several indices are defined for describing the key features of a seasonal cycle, including local winter/summer (LW/LS) periods and local spring/autumn phase (LSP/LAP). The Ensemble Empirical Mode Decomposition method is applied to determine the indices for each year. The LW period was found to have shortened by 2–6 d (10 yr)-1, mainly due to an earlier end to winter conditions, with the LW mean temperature having increased by 0.2°C–0.4°C (10 yr)?1, over almost all of China. Records of the most severe climate extremes changed less than more typical winter conditions did. The LS period was found to have lengthened by 2–4 d (10 yr)?1, due to progressively earlier onsets and delayed end dates of the locally defined hot period. The LS mean temperature increased by 0.1°C–0.2°C (10 yr)-1 in most of China, except for a region in southern China centered on the mid-lower reaches of the Yangtze River. In contrast to the winter cases, the warming trend in summer was more prominent in the most extreme records than in those of more typical summer conditions. The LSP was found to have advanced significantly by about 2 d (10 yr)-1 in most of China. Changes in the autumn phase were less prominent. Relatively rapid changes happened in the 1980s for most of the regional mean indices dealing with winter and in the 1990s for those dealing with summer.
文摘The temperature and soil moisture conditions as well as vegetation patterns were studied to describe the habitat and to model the life cycle of Melanoplusfrigidus, a true alpine grasshopper of the Scandes. In the low alpine belt of the Norwegian Scandes the species colonizes only the warmest microhabitats with maximum soil surface temperatures of 31℃. Vegetation of these habitats consists of shrub-rich heath dominated by Vaccinium myrtillus and Calluna vulgaris. Using continuously measured temperature data, the development times for four different seasons were modeled and related to field observations. The maximum delay of adult molt was estimated to amount to 3 weeks, the delay being determined by the variation in spring temperature conditions between different years. The possibilities of using M. frigidus as an indicator organism of climate change effects on alpine zoo-coenoses of the Scandes are discussed.
基金supported by the European Union (CC-Water S project, SEE/A/022/2.1/X)by the Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN2008TL25YL)
文摘The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the winter period and during grazing, viable cells of faecal coliforms and faecal enterococci were detected only in the first 10 cm below ground, while,after the winter period and before the new seasonal grazing, a lower number of viable cells of both faecal indicators was detected only in some of the investigated soil profiles, and within the first 5 cm. Taking into consideration the results of specific investigations, we hypothesise that the non-uniform spatial distribution of grass roots within the studied soil can play an important role in influencing this phenomenon, while several abiotic factors do not play any significant role. Taking into account the local trend in the increase of air temperature, a different distribution of microbial pollution over time is expected in spring waters, in future climate scenarios. The progressive increase in air temperature will cause a progressive decrease in freeze/thaw cycles at higher altitudes, minimising cold shocks on microbial cells, and causing spring water pollution also during winter.