Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. O...Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.展开更多
Seasonal variations of the equatorial undercurrent(EUC) termination in the Eastern Pacific,and their mechanism were examined using the Estimating the Circulation and Climate of the Ocean,PhaseⅡ(ECCO2).The ECCO2 repro...Seasonal variations of the equatorial undercurrent(EUC) termination in the Eastern Pacific,and their mechanism were examined using the Estimating the Circulation and Climate of the Ocean,PhaseⅡ(ECCO2).The ECCO2 reproduced a weak and shallow eastward EUC east of the Galapagos Islands,with annual mean transport of half of EUC to the west of the Islands.The diagnosis of zonal momentum equation suggests that the zonal advection(nonlinear terms) drives the EUC beyond the Islands rather than the pressure gradient force.The EUC in the Far Eastern Pacific has the large st core velocity in boreal spring and the smallest one in boreal summer,and its volume transport exhibits two maxima in boreal spring and autumn.The seasonal variability of the EUC in the Eastern Pacific is dominated by the Kelvin and Rossby waves excited by the zonal winds anomalies in the central and Eastern Pacific that are associated with the seasonal relaxation or intensification of the trade wind.In the Far Eastern Pacific to the east of 120°W,the eastward propagation Kelvin waves play a dominate role in the seasonal cycle of the EUC,results in a semiannual fluctuation with double peaks in boreal spring and autumn.A construction of water mass budget suggests that approximately 24.1% of the EUC water east of 100°W has upwelled to the mixed layer by0.35 m/d.The estimated upwelling is stronge st during boreal autumn and weake st during boreal winter.It is also found that approximately 42.6% of the EUC turns westward to feed the south equatorial current(SEC),13.2% flows north of the equator,and 20.1% flows south of the equator,mainly contributing to Peru-Chile undercurrent.展开更多
文摘Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
基金Supported by the National Key Research and Development Program of China(No.2017YFA0604600)the Fundamental Research Funds for the Central Universities(No.2019B63014)National Natural Science Foundation of China(No.41676019)。
文摘Seasonal variations of the equatorial undercurrent(EUC) termination in the Eastern Pacific,and their mechanism were examined using the Estimating the Circulation and Climate of the Ocean,PhaseⅡ(ECCO2).The ECCO2 reproduced a weak and shallow eastward EUC east of the Galapagos Islands,with annual mean transport of half of EUC to the west of the Islands.The diagnosis of zonal momentum equation suggests that the zonal advection(nonlinear terms) drives the EUC beyond the Islands rather than the pressure gradient force.The EUC in the Far Eastern Pacific has the large st core velocity in boreal spring and the smallest one in boreal summer,and its volume transport exhibits two maxima in boreal spring and autumn.The seasonal variability of the EUC in the Eastern Pacific is dominated by the Kelvin and Rossby waves excited by the zonal winds anomalies in the central and Eastern Pacific that are associated with the seasonal relaxation or intensification of the trade wind.In the Far Eastern Pacific to the east of 120°W,the eastward propagation Kelvin waves play a dominate role in the seasonal cycle of the EUC,results in a semiannual fluctuation with double peaks in boreal spring and autumn.A construction of water mass budget suggests that approximately 24.1% of the EUC water east of 100°W has upwelled to the mixed layer by0.35 m/d.The estimated upwelling is stronge st during boreal autumn and weake st during boreal winter.It is also found that approximately 42.6% of the EUC turns westward to feed the south equatorial current(SEC),13.2% flows north of the equator,and 20.1% flows south of the equator,mainly contributing to Peru-Chile undercurrent.