Impacts of land models and initial land conditions (ICs) on the Asian summer monsoon, especially its onset, were investigated using the NCEP Climate Forecast System (CFS). Two land models, the Oregon State Univers...Impacts of land models and initial land conditions (ICs) on the Asian summer monsoon, especially its onset, were investigated using the NCEP Climate Forecast System (CFS). Two land models, the Oregon State University (OSU) land model and the NCEP, OSU, Air Force, and Hydrologic Research Laboratory (Noah) land model, were used to get parallel experiments NCEP/Department of Energy (DOE) Global Reanalysis 2 System (GLDAS). The experiments also used land ICs from the (GR2) and the Global Land Data Assimilation Previous studies have demonstrated that, a systematic weak bias appears in the modeled monsoon, and this bias may be related to a cold bias over the Asian land mass. Results of the current study show that replacement of the OSU land model by the Noah land model improved the model's cold bias and produced improved monsoon precipitation and circulation patterns. The CFS predicted monsoon with greater proficiency in E1 Nifio years, compared to La Nifia years model in monsoon predictions for individual years. and the Noah model performed better than the OSU These improvements occurred not only in relation to monsoon onset in late spring but also to monsoon intensity in summer. Our analysis of the monsoon features over the India peninsula, the Indo-China peninsula, and the South Chinese Sea indicates different degrees of improvement. Furthermore, a change in the land models led to more remarkable improvement in monsoon prediction than did a change from the GR2 land ICs to the GLDAS land ICs.展开更多
[Objective] The aim was to study the obtaining method of meticulous climate forecast product and test its forecast effect. [Method] Based on the national standard surface observation data and secondary data bank obtai...[Objective] The aim was to study the obtaining method of meticulous climate forecast product and test its forecast effect. [Method] Based on the national standard surface observation data and secondary data bank obtained by means of distance weight interpolation method, the model of climate forecast was established, and the timing, fixed-point and quantitative meticulous climate forecast of meteorological elements was obtained by using many forecast methods and artificial revision, finally the forecast effect was tested. [Result] At present, meticulous climate forecast system was used to predict the daily, five-day, ten-day, monthly, seasonal and annual variation of six meteorological elements (including average temperature, maximum temperature, minimum temperature, precipitation, average pressure and sunshine) in 10 meteorological stations in Guangzhou City. The forecast effect of meteorological elements in 10 stations in Guangzhou City from 2006 to 2010 was tested, and the average scores of monthly precipitation, average temperature, maximum temperature and minimum temperature were 75.0, 94.5, 98.6 and 88.9, respectively, while the scores of five-day meteorological elements were 77.1, 90.6, 90.1 and 82.8, which met the requirement of objective management of Guangdong Meteorological Observatory. [Conclusion] Meticulous climate forecast system could be widely used in the forecast of agricultural meteorological disasters and fixed-point forecast in large reservoir, new airport and nuclear power station.展开更多
Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that...Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85℃/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65℃/10yr, 0.46℃/10yr and 0.27℃/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.展开更多
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated fo...A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.展开更多
This paper deals with a new integrated method of reconstruction and forecasting of climatic changes in future. The method is based on proxy data pollen-spore analysis method, 14C analysis method, nowadays meteorologic...This paper deals with a new integrated method of reconstruction and forecasting of climatic changes in future. The method is based on proxy data pollen-spore analysis method, 14C analysis method, nowadays meteorological data, and data about of solar activity expressed in numbers of W (Wolf). Here we present the results of investigation of sediments of the 2nd Fomich River terrace, Taymyr Peninsula, Russia. The formation of the peat bog started 10500 ± 140 years BP and continued during the entire Holocene. The pollen analysis of the sediment samples of the 2nd Fomich River terrace and the analysis of surface samples from a larch forest, typical of this region, reveals two phytochrones: both climatically preconditioned--tundra phytochrone (I1-4) and forest phytochrone (Ⅱ1-4). The techniques of reconstruction and forecasting of basic elements of climate are presented and discussed in details.展开更多
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie...Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.展开更多
Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data...Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data, the dominant modes of winter SAT over northem China were explored. The results showed that there are two modes that account for a majority of the total variance over northern China. The first mode is unanimously colder (warmer) over the whole of northern China. The second mode is characterized by a dipole structure that is colder (warmer) over Northwest China (NWC) and warmer (colder) over Northeast China (NEC), accounting for a fairly large proportion of the total variance. The two components constituting the second mode, the individual variations of winter SAT over NWC and NEC and their respective preceding factors, were further investigated. It was found that the autumn SAT anomalies are closely linked to persistent snow cover anomalies over Eurasia, showing the delayed effects on winter climate over northern China. Specifically, the previous autumn SAT anomalies over the Lake Baikal (LB; 50-60°N, 85-120°E) and Mongolian Plateau (MP; 42-52°N, 80-120°E) regions play an important role in adjusting the variations of winter SAT over NWC and NEC, respectively. The previous autumn SAT anomaly over the MP region may exert an influence on the winter SAT over NEC through modulating the strength and location of the East Asian major trough. The previous autumn SAT over the LB region may modulate winter westerlies at the middle and high latitudes of Asia and accordingly affects the invasion of cold air and associated winter SAT over NWC.展开更多
To further understand the prediction skill for the interannual variability of the sea ice concentration(SIC)in specific regions of the Arctic,this paper evaluates the NCEP Climate Forecast System version 2(CFSv2),in p...To further understand the prediction skill for the interannual variability of the sea ice concentration(SIC)in specific regions of the Arctic,this paper evaluates the NCEP Climate Forecast System version 2(CFSv2),in predicting the autumn SIC and its interannual variability over the Barents–East Siberian Seas(BES).It is found that CFSv2 presents much better prediction skill for the September SIC over BES than the Arctic as a whole at 1–6-month leads,and high prediction skill for the interannual variability of the SIC over BES is displayed at 1–2-month leads after removing the linear trend.CFSv2 can reasonably reproduce the relationship between the SIC over BES in September and such factors as the surface air temperature(SAT),200-hPa geopotential height,sea surface temperature(SST),and North Atlantic Oscillation.In addition,it is found that the prescribed SIC initial condition in August as an input to CFSv2 is also essential.Therefore,the above atmospheric and oceanic factors,as well as an accurate initial condition of SIC,all contribute to a high prediction skill for SIC over BES in September.Based on a statistical prediction method,the contributions from individual predictability sources are further identified.The high prediction skill of CFSv2 for the interannual variability of SIC over BES is largely attributable to its accurate predictions of the SAT and SST,as well as a better initial condition of SIC.展开更多
基金partially supported by the International S & T Cooperation Project of the Ministry of Science and Technology of China (Grant No. 2009DFA21430)the National Natural Science Foundation of China (Grant No. 40921003)the Basic Scientific Research and Operation Foundation of the CAMS (Grant No. 2010Z003)
文摘Impacts of land models and initial land conditions (ICs) on the Asian summer monsoon, especially its onset, were investigated using the NCEP Climate Forecast System (CFS). Two land models, the Oregon State University (OSU) land model and the NCEP, OSU, Air Force, and Hydrologic Research Laboratory (Noah) land model, were used to get parallel experiments NCEP/Department of Energy (DOE) Global Reanalysis 2 System (GLDAS). The experiments also used land ICs from the (GR2) and the Global Land Data Assimilation Previous studies have demonstrated that, a systematic weak bias appears in the modeled monsoon, and this bias may be related to a cold bias over the Asian land mass. Results of the current study show that replacement of the OSU land model by the Noah land model improved the model's cold bias and produced improved monsoon precipitation and circulation patterns. The CFS predicted monsoon with greater proficiency in E1 Nifio years, compared to La Nifia years model in monsoon predictions for individual years. and the Noah model performed better than the OSU These improvements occurred not only in relation to monsoon onset in late spring but also to monsoon intensity in summer. Our analysis of the monsoon features over the India peninsula, the Indo-China peninsula, and the South Chinese Sea indicates different degrees of improvement. Furthermore, a change in the land models led to more remarkable improvement in monsoon prediction than did a change from the GR2 land ICs to the GLDAS land ICs.
文摘[Objective] The aim was to study the obtaining method of meticulous climate forecast product and test its forecast effect. [Method] Based on the national standard surface observation data and secondary data bank obtained by means of distance weight interpolation method, the model of climate forecast was established, and the timing, fixed-point and quantitative meticulous climate forecast of meteorological elements was obtained by using many forecast methods and artificial revision, finally the forecast effect was tested. [Result] At present, meticulous climate forecast system was used to predict the daily, five-day, ten-day, monthly, seasonal and annual variation of six meteorological elements (including average temperature, maximum temperature, minimum temperature, precipitation, average pressure and sunshine) in 10 meteorological stations in Guangzhou City. The forecast effect of meteorological elements in 10 stations in Guangzhou City from 2006 to 2010 was tested, and the average scores of monthly precipitation, average temperature, maximum temperature and minimum temperature were 75.0, 94.5, 98.6 and 88.9, respectively, while the scores of five-day meteorological elements were 77.1, 90.6, 90.1 and 82.8, which met the requirement of objective management of Guangdong Meteorological Observatory. [Conclusion] Meticulous climate forecast system could be widely used in the forecast of agricultural meteorological disasters and fixed-point forecast in large reservoir, new airport and nuclear power station.
基金Under the auspices of Major State Basic Research Development Program of China (No. 2010CB950900)Technology Innovation Program of Harbin City (No. 2007RFXXS029)
文摘Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85℃/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65℃/10yr, 0.46℃/10yr and 0.27℃/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.
基金National Natural Science Foundation of China (40875067, 40675040)Knowledge Innovation Program of the Chinese Academy of Sciences (IAP09306)National Basic Research Program of China. (2006CB400505)
文摘A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.
文摘This paper deals with a new integrated method of reconstruction and forecasting of climatic changes in future. The method is based on proxy data pollen-spore analysis method, 14C analysis method, nowadays meteorological data, and data about of solar activity expressed in numbers of W (Wolf). Here we present the results of investigation of sediments of the 2nd Fomich River terrace, Taymyr Peninsula, Russia. The formation of the peat bog started 10500 ± 140 years BP and continued during the entire Holocene. The pollen analysis of the sediment samples of the 2nd Fomich River terrace and the analysis of surface samples from a larch forest, typical of this region, reveals two phytochrones: both climatically preconditioned--tundra phytochrone (I1-4) and forest phytochrone (Ⅱ1-4). The techniques of reconstruction and forecasting of basic elements of climate are presented and discussed in details.
基金supported by the National Key Research and Development Program of China(2023YFC3206300)the National Natural Science Foundation of China(42477529,42371145,42261026)+2 种基金the China-Pakistan Joint Program of the Chinese Academy of Sciences(046GJHZ2023069MI)the Gansu Provincial Science and Technology Program(22ZD6FA005)the National Cryosphere Desert Data Center(E01Z790201).
文摘Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.
基金the support of the National Natural Science Foundation of China (Grant Nos. 41375090 and 41375089)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2013Z002)
文摘Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data, the dominant modes of winter SAT over northem China were explored. The results showed that there are two modes that account for a majority of the total variance over northern China. The first mode is unanimously colder (warmer) over the whole of northern China. The second mode is characterized by a dipole structure that is colder (warmer) over Northwest China (NWC) and warmer (colder) over Northeast China (NEC), accounting for a fairly large proportion of the total variance. The two components constituting the second mode, the individual variations of winter SAT over NWC and NEC and their respective preceding factors, were further investigated. It was found that the autumn SAT anomalies are closely linked to persistent snow cover anomalies over Eurasia, showing the delayed effects on winter climate over northern China. Specifically, the previous autumn SAT anomalies over the Lake Baikal (LB; 50-60°N, 85-120°E) and Mongolian Plateau (MP; 42-52°N, 80-120°E) regions play an important role in adjusting the variations of winter SAT over NWC and NEC, respectively. The previous autumn SAT anomaly over the MP region may exert an influence on the winter SAT over NEC through modulating the strength and location of the East Asian major trough. The previous autumn SAT over the LB region may modulate winter westerlies at the middle and high latitudes of Asia and accordingly affects the invasion of cold air and associated winter SAT over NWC.
基金Supported by the National Key Research and Development Program of China(2022YFE0106800)National Natural Science Foundation of China(42230603)Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021001)。
文摘To further understand the prediction skill for the interannual variability of the sea ice concentration(SIC)in specific regions of the Arctic,this paper evaluates the NCEP Climate Forecast System version 2(CFSv2),in predicting the autumn SIC and its interannual variability over the Barents–East Siberian Seas(BES).It is found that CFSv2 presents much better prediction skill for the September SIC over BES than the Arctic as a whole at 1–6-month leads,and high prediction skill for the interannual variability of the SIC over BES is displayed at 1–2-month leads after removing the linear trend.CFSv2 can reasonably reproduce the relationship between the SIC over BES in September and such factors as the surface air temperature(SAT),200-hPa geopotential height,sea surface temperature(SST),and North Atlantic Oscillation.In addition,it is found that the prescribed SIC initial condition in August as an input to CFSv2 is also essential.Therefore,the above atmospheric and oceanic factors,as well as an accurate initial condition of SIC,all contribute to a high prediction skill for SIC over BES in September.Based on a statistical prediction method,the contributions from individual predictability sources are further identified.The high prediction skill of CFSv2 for the interannual variability of SIC over BES is largely attributable to its accurate predictions of the SAT and SST,as well as a better initial condition of SIC.