期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Homogenization of climate series:The basis for assessing climate changes 被引量:14
1
作者 YAN ZhongWei LI Zhen XIA JiangJiang 《Science China Earth Sciences》 SCIE EI CAS 2014年第12期2891-2900,共10页
Long-term meteorological observation series are fundamental for reflecting climate changes.However,almost all meteorological stations inevitably undergo relocation or changes in observation instruments,rules,and metho... Long-term meteorological observation series are fundamental for reflecting climate changes.However,almost all meteorological stations inevitably undergo relocation or changes in observation instruments,rules,and methods,which can result in systematic biases in the observation series for corresponding periods.Homogenization is a technique for adjusting these biases in order to assess the true trends in the time series.In recent years,homogenization has shifted its focus from the adjustments to climate mean status to the adjustments to information about climate extremes or extreme weather.Using case analyses of ideal and actual climate series,here we demonstrate the basic idea of homogenization,introduce new understanding obtained from recent studies of homogenization of climate series in China,and raise issues for further studies in this field,especially with regards to climate extremes,uncertainty of the statistical adjustments,and biased physical relationships among different climate variables due to adjustments in single variable series. 展开更多
关键词 climate series INHOMOGENEITY HOMOGENIZATION trends in climate series climate extremes
原文传递
Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960
2
作者 Athanassios A.ARGIRIOU Zhen LI +3 位作者 Vasileios ARMAOS Anna MAMARA Yingling SHI Zhongwei YAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1326-1336,共11页
In this paper,we describe and analyze two datasets entitled“Homogenised monthly and daily temperature and precipitation time series in China during 1960–2021”and“Homogenised monthly and daily temperature and preci... In this paper,we describe and analyze two datasets entitled“Homogenised monthly and daily temperature and precipitation time series in China during 1960–2021”and“Homogenised monthly and daily temperature and precipitation time series in Greece during 1960–2010”.These datasets provide the homogenised monthly and daily mean(TG),minimum(TN),and maximum(TX)temperature and precipitation(RR)records since 1960 at 366 stations in China and 56stations in Greece.The datasets are available at the Science Data Bank repository and can be downloaded from https://doi.org/10.57760/sciencedb.01731 and https://doi.org/10.57760/sciencedb.01720.For China,the regional mean annual TG,TX,TN,and RR series during 1960–2021 showed significant warming or increasing trends of 0.27℃(10 yr)^(-1),0.22℃(10 yr)^(-1),0.35℃(10 yr)^(-1),and 6.81 mm(10 yr)-1,respectively.Most of the seasonal series revealed trends significant at the 0.05level,except for the spring,summer,and autumn RR series.For Greece,there were increasing trends of 0.09℃(10 yr)-1,0.08℃(10 yr)^(-1),and 0.11℃(10 yr)^(-1)for the annual TG,TX,and TN series,respectively,while a decreasing trend of–23.35 mm(10 yr)^(-1)was present for RR.The seasonal trends showed a significant warming rate for summer,but no significant changes were noted for spring(except for TN),autumn,and winter.For RR,only the winter time series displayed a statistically significant and robust trend[–15.82 mm(10 yr)^(-1)].The final homogenised temperature and precipitation time series for both China and Greece provide a better representation of the large-scale pattern of climate change over the past decades and provide a quality information source for climatological analyses. 展开更多
关键词 daily and monthly temperature PRECIPITATION HOMOGENISATION climate time series Greece China
下载PDF
Comprehensive applicability evaluation of four precipitation products at multiple spatiotemporal scales in Northwest China
3
作者 WANG Xiangyu XU Min +3 位作者 KANG Shichang LI Xuemei HAN Haidong LI Xingdong 《Journal of Arid Land》 SCIE CSCD 2024年第9期1232-1254,共23页
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie... Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future. 展开更多
关键词 precipitation products the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5) Global Precipitation Climatology Centre(GPCC) Climatic Research Unit gridded Time series(CRU TS) Tropical Rainfall Measuring Mission(TRMM) applicability evaluation Northwest China
下载PDF
Climatological Hydric Balance and the Trends Analysis Climatic in the Region of Machado in Minas Gerais State,Brazil
4
作者 Gustavo Souza Rodrigues Fernando Ferrari Putti +2 位作者 Antonio Carlos da Silva Alisson Souza de Oliveira Luís Roberto Almeida Gabriel Filho 《American Journal of Climate Change》 2018年第4期558-574,共17页
Lately the planet’s climate has been constantly changing, caused mainly by global warming which has exposed a great deal of concern to the population over the years. In order to understand the possible impacts that s... Lately the planet’s climate has been constantly changing, caused mainly by global warming which has exposed a great deal of concern to the population over the years. In order to understand the possible impacts that such changes may have on the environment and society in general, the importance of the analysis of climate and hydrological events trends and their performance in a region is justified. The objective of the present work was to perform the climatic classification and to evaluate the behavior of the Climatological Hydric Balance—CHB, from the region of Machado state of Minas Gerais—MG, taking into account a historical series of 55 years of climatic season data of the National Institute of Meteorology—INMET;to verify the occurrence of climatic changes by the temporal trends of precipitation and the average temperature, using the Mann-Kendall and Pettitt method;and the influence of these possible climate changes on CHB behavior and on the region’s climate classification. Based on the results found it verified the increase in the water deficit between the months of June to September and a reduction in the water surplus from November to February. By means of the trend analysis, there was a positive trend of increase in the average temperature of 1.6°C until the year 2100. The continuity and occurrence of these trends may have impacts on the economy, agriculture, the hydrological cycle, and consequently on the fauna, the flora and the population. 展开更多
关键词 Climatic series Global Warming IPCC
下载PDF
Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015 被引量:14
5
作者 付阳 陈辉 +2 位作者 牛慧慧 张斯琦 杨祎 《Journal of Geographical Sciences》 SCIE CSCD 2018年第4期400-414,共15页
Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SG... Based on TIMESAT 3.2 platform, MODIS NDVI data(2000–2015) of Qaidam Basin are fitted, and three main phenological parameters are extracted with the method of dynamic threshold, including the start of growth season(SGS), the end of growth season(EGS) and the length of growth season(LGS). The spatial and temporal variation of vegetation phenology and its response to climate changes are analyzed respectively. The conclusions are as follows:(1) SGS is mainly delayed as a whole. Areas delayed are more than the advanced in EGS, and EGS is a little delayed as a whole. LGS is generally shortened.(2) With the altitude rising, SGS is delayed, EGS is advanced, and LGS is shortened and phenophase appears a big variation below 3000 m and above 5000 m.(3) From 2000 to 2015, the temperature appears a slight increase along with a big fluctuation, and the precipitation increases evidently.(4) Response of phenophase to precipitation is not obvious in the low elevation humid regions, where SGS arrives early and EGS delays; while, in the upper part of the mountain regions, SGS delays and EGS advances with temperature rising, SGS arrives early and EGS delays with precipitation increasing. 展开更多
关键词 Qaidam Basin climate changes remote sensing phenology time series reconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部