An analysis of the changes in vegetation cover on the territory of the Republic of Khakassia in 2000–2021 due to climatic trends was carried out based on the MODIS data.The changes in vegetation cover were estimated ...An analysis of the changes in vegetation cover on the territory of the Republic of Khakassia in 2000–2021 due to climatic trends was carried out based on the MODIS data.The changes in vegetation cover were estimated based on trends in Normalized Difference Vegetation Index(NDVI)and Enhanced Vegetation Index(EVI).In general,in the 21st century,an increase in the biomass of vegetation cover is observed.Positive trends were observed in 16%–22%of the territory,and negative only in 1%–3%.For about 20%of the analyzed territory,a significant influence of climate on the changes in vegetation cover was revealed.The most pronounced negative impact on vegetation cover was caused by summer air and soil temperatures,spring temperature,and summer winds,and the positive impact was caused by summer precipitation and soil moisture.The response of the vegetation cover to climate was non-uniform concerning the topography.Thus,a significant correlation with the amount of precipitation was observed for~20%–35%of vegetation growing below 600 m above sea level and for less than 5%above this elevation.The negative effect of summer temperatures on plants prevailed mainly at an elevation below~1400 m above sea level.Projected climate change is likely to lead to significant degradation of vegetation in the steppe and foreststeppe in Khakassia in the coming decades.展开更多
In this study, the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China. Dynamical downscaling is performed using a 60-km horizontal resolution Regional I...In this study, the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China. Dynamical downscaling is performed using a 60-km horizontal resolution Regional Integrated Environmental Model System (RIEMS) forced by the NCEP-Department of Energy (DOE) reanalysis II (NCEP-2). The results show that this regional climate model (RCM) can not only produce dynamically consis- tent fine scale fields of atmosphere and land surface in the regional domain, but it also has the ability to minimize artificial climate trends existing in the global reanalysis to a certain extent. As compared to the observed 2-meter temperature anomaly averaged across China, our model can simulate the observed inter-annual variation and variability as well as reduce artificial climate trends in the reanalysis by approximately 0.10℃ decade-1 from 1980 to 2007. The RIEMS can effectively reduce artificial trends in global reanalysis for areas in western China, especially for regions with high altitude mountains and deserts, as well as introduce some new spurious changes in other local regions. The model simulations overesti- mated observed winter trends for most areas in eastern China with the exception of the Tibetan Plateau, and it greatly overestimated observed summer trends in the Si- chuan Basin located in southwest China. This implies that the dynamical downscaling of RCM for long-term trends has certain seasonal and regional dependencies due to imperfect physical processes and parameterizations.展开更多
This study compared the differences in the wave climate in the South China Sea and North Indian Ocean under these two datasets:ERA-40 wave reanalysis and Mei’s hindcast wave data.In the numerical calculation of regio...This study compared the differences in the wave climate in the South China Sea and North Indian Ocean under these two datasets:ERA-40 wave reanalysis and Mei’s hindcast wave data.In the numerical calculation of regional ocean waves,the wave climate characteristics exhibited significant bias if the influence of external swells(swells from afar)was not fully considered,which may provide an incorrect basis for global climate change analysis.1)The trends of the significant wave height(SWH)obtained from the two datasets showed significant differences,such as those of the Bay of Bengal and the Java Sea in June-July-August.For the past 45 years,SWH from ERA-40(SWH-ERA)exhibited a significant annual increase in low-latitude waters of the North Indian Ocean(0.2-0.6 cm yr^(-1))and South China Sea(0.2-0.8 cm yr^(-1)).2)In the Bay of Bengal,the SWH-ERA in each month was generally 0.5 m higher than the SWH from Mei’s hindcast wave data(SWH-Mei)and can reach 1.0 m higher in some months.3)In the Bay of Bengal,SWH-ERA and SWH-Mei increased significantly at annual rates of 0.13 and 0.27 cm yr^(-1),respectively.This increasing trend was mainly reflected after 1978.SWH-ERA showed a trough in 1975(1.33 m)and a crest in 1992(1.83 m),which were not reflected in SWH-Mei.展开更多
The trends in annual precipitation and wind induced by tropical cyclones(TCs)over Shanghai during the last 40 years are estimated.Results indicate that there is a significant increasing trend in the annual total preci...The trends in annual precipitation and wind induced by tropical cyclones(TCs)over Shanghai during the last 40 years are estimated.Results indicate that there is a significant increasing trend in the annual total precipitation induced by TCs,which is related to the significant positive trends in daily precipitation and annual torrential rain days.Meanwhile,a significant decreasing trend shows in maximum sustained wind,which seems to be related to the downward trend in the intensity of TCs when affecting Shanghai.The annual frequencies of affected TCs,TC translation speed and distance from Shanghai when affecting Shanghai have no obvious tendency.The different trends in precipitation and wind suggested that a more comprehensive metric for assessing TCs'influence on society is necessary.展开更多
The regionalization of climate in China is based on a three-level classification in terms of lasting days for accumulated temperature (AT),aridity index,and July mean temperature.Based on daily meteorological observ...The regionalization of climate in China is based on a three-level classification in terms of lasting days for accumulated temperature (AT),aridity index,and July mean temperature.Based on daily meteorological observational data from 756 stations,trends and interdecadal variation in indices for classifying temperature zones,moisture regions and climatic subregions in the period 1961-2010 are discussed.Results reveal that the nationwide AT ≥ 10℃C (AT10) and its lasting days are basically increasing,while aridity in northern Xinjiang is decreasing.The increasing trend of July mean temperature in North China is found to be notably larger than in South China.In terms of their national averages,a marked step increase of AT10 and its lasting period,as well as July mean temperature occurred around 1997,while the aridity index presents no such clear change.By comparing regionalization areas for 1998-2010 with those for 1961-97,it is found that the semi-humid,semi-dry and dry regions in the sub-temperate zone,as well as the humid region in the middle subtropical zone,have experienced substantial shrinkage in terms of area.In contrast,the areas of semi-dry and dry regions in the warm temperate zone,as well as the humid region in the south subtropical zone,present drastically increasing trends.Owing to the influence of such step changes that took place in 1997,that particular point in time should be given close attention in future studies regarding the regionalization of climate in China.展开更多
The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the ...The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the 40-year(1979–2018)ERA-Interim data from the European Center for Medium-Range Weather Forecasts,this study presented the spatial-temporal distribution and climatic trend of the stability of global offshore wind energy as well as the abrupt phenomenon of wind energy stability in key regions over the past 40 years with the climatic analysis method and Mann-Kendall(M-K)test.The results show the following 5 points.(1)According to the coefficient of variation(C_(v))of the wind power density,there are six permanent stable zones of global offshore wind energy:the southeast and northeast trade wind zones in the Indian,Pacific and Atlantic oceans,the Southern Hemisphere westerly,and a semi-permanent stable zone(North Indian Ocean).(2)There are six lowvalue zones for both seasonal variability index(S_(v))and monthly variability index(M_(v))globally,with a similar spatial distribution as that of the six permanent stable zones.M_(v) and S_(v) in the Arabian Sea are the highest in the world.(3)After C_(v),M_(v) and S_(v) are comprehensively considered,the six permanent stable zones have an obvious advantage in the stability of wind energy over other sea areas,with C_(v) below 0.8,M_(v) within 1.0,and S_(v) within 0.7 all the year round.(4)The global stability of offshore wind energy shows a positive climatic trend for the past four decades.C_(v),M_(v) and S_(v) have not changed significantly or decreased in most of the global ocean during 1979 to2018.That is,wind energy is flat or more stable,while the monthly and seasonal variabilities tend to shrink/smooth,which is beneficial for wind energy utilization.(5)C_(v) in the low-latitude Pacific and M_(v) and S_(v) in both the North Indian Ocean and the low-latitude Pacific have an obvious abrupt phenomenon at the end of the20th century.展开更多
Trends of annual and monthly temperature, precipitation, potential evapotranspiration and aridity index were analyzed to understand climate change during the period 1971-2000 over the Tibetan Plateau which is one of t...Trends of annual and monthly temperature, precipitation, potential evapotranspiration and aridity index were analyzed to understand climate change during the period 1971-2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56-Penmen-Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and minimum temperatures, solar radiation, relative humidity and wind speed. Results indicate generally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly potential evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simultaneous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.展开更多
Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were ca...Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be anolied in flood assessment and climate change fields.展开更多
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test ...Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.展开更多
[Objective] Effects of climate change on agriculture production were studied in order to provide basis for developing agriculture and adjusting agricultural structure.[Method] The conventional mathematical statistics ...[Objective] Effects of climate change on agriculture production were studied in order to provide basis for developing agriculture and adjusting agricultural structure.[Method] The conventional mathematical statistics method was adopted to analyze climate characteristics and change trends.[Result] Compared with the agricultural resources census in 1980,annual average sunshine hours and annual precipitation reduced by 257 h and 77 mm,respectively,while annual average temperature increased by 1.2 ℃.In recent 50 years,annual sunshine hours trend decreased by 482 h,and annual mean temperature trend rose by 2.55 ℃,while annual precipitation reduced by 185 mm.[Conclusion] The reduction of sunshine hours had great effect on agricultural facilities,and temperature increase could extend crop growth period and improve biomass yield,providing growth conditions for pests and germs,while the frequency of drought disaster was increased due to the decrease of precipitation.展开更多
Based on the daily precipitation data of 87 meteorological observation stations in Guangxi during 1961-2008,the variation characteristics of precipitation concentration degree(PCD) in Guangxi were counted and analyzed...Based on the daily precipitation data of 87 meteorological observation stations in Guangxi during 1961-2008,the variation characteristics of precipitation concentration degree(PCD) in Guangxi were counted and analyzed by using Monte Carlo test method.The results showed that the climate warming in most areas of Guangxi was very obvious,and the annual precipitation concentration degree increased gradually from the northeast to the southwest in Guangxi.The precipitation concentration period was from the middle of April to the end of August and delayed from the northeast to the southwest in Guangxi.In the background which the global climate became warm,the annual precipitation in most areas of Guangxi had the trend which the precipitation concentrated strengthening.It was said that the probability of flood disaster had the increase trend.The precipitation concentration period had the earlier trend,which was more obvious in the north than in the south of Guangxi.The rainstorm concentration degree in the northwest of Guangxi and few parts had the decrease trend and had the increase trend in other areas.It was said that the probabilities of flood and mud-rock flow disasters increased.The rainstorm concentration periods in most areas had the later trend.展开更多
[Objective] The research aimed to study the climate variation characteristics of frost in Shandong Province. [Method] The daily minimum surface temperature ≤ 0 ℃ in autumn or spring was as the frost index. Based on ...[Objective] The research aimed to study the climate variation characteristics of frost in Shandong Province. [Method] The daily minimum surface temperature ≤ 0 ℃ in autumn or spring was as the frost index. Based on the daily minimum surface temperature data in 67 meteorological observatories of Shandong Province during 1961-2008, the variation characteristics of first, last frost dates and frost-free period in Shandong Province were analyzed by using the climate diagnosis analysis method. [Result] The climate characteristics of first, last frost dates and frost-free period had the obvious geographical differences in Shandong Province in recent 48 years. The extreme differences of first, last frost dates and frost-free period were all above the three times of their standard deviations. It illustrated that the dispersion degrees of first, last dates and frost-free period were all very big. The average first frost date postponed with 1.99 d/10 a velocity in Shandong Province in recent 48 years, and the last frost date advanced with 1.46 d/10 a velocity. The postponing range of first frost date was bigger than the advancing range of last frost date, and the frost-free period prolonged with 3.42 d/10 a velocity. Seen from the interdecadal variations, the first frost date started to obviously postpone, and the last frost date obviously advanced since the 1990s. The frost-free period also started to obviously prolong since the 1990s. [Conclusion] The research provided the certain reference for the predication, prevention of frost disaster and the structure adjustment of crops.展开更多
Bused on January 1962-October 1993 mean value series of monthly mean temperature anomalies of 16 Antarctic stations on 10 standard isobanc surfaces from the surface to the 30 hPa,long term trends and periodic features...Bused on January 1962-October 1993 mean value series of monthly mean temperature anomalies of 16 Antarctic stations on 10 standard isobanc surfaces from the surface to the 30 hPa,long term trends and periodic features of climate changes from the troposphere to the lower stratosphere over the Antarctic region are investigated by maximum entropy power spectrum analysis,and the relation between climate change of the stratosphere (troposphere) and tolal ozone (southern 500 hPa circulation) is discussed.展开更多
Predictive assessments of the geomorphological systems’ behavior under climate warming in southern Siberia have been performed based on time-series data, using theoretical and empirical models of processes. High sens...Predictive assessments of the geomorphological systems’ behavior under climate warming in southern Siberia have been performed based on time-series data, using theoretical and empirical models of processes. High sensitivity and fast response of erosional, aeolian, and cryogenic processes to current climatic changes are presented. The current trends under changing functioning conditions of geomorphological systems while maintaining climatic trends have been determined. Areas with different targeting of morpholithogenesis are identified.展开更多
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Hom...Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.展开更多
In the context of 1905–1995 series from Nanjing and Hangzhou, study is undertaken of estab-lishing a predictive model of annual mean temperature in 1996–2005 to come over the Changjiang (Yangtze River) delta region ...In the context of 1905–1995 series from Nanjing and Hangzhou, study is undertaken of estab-lishing a predictive model of annual mean temperature in 1996–2005 to come over the Changjiang (Yangtze River) delta region through mean generating function and artificial neural network in combination. Results show that the established model yields mean error of 0.45°C for their abso-lute values of annual mean temperature from 10 yearly independent samples (1986–1995) and the difference between the mean predictions and related measurements is 0.156°C. The developed model is found superior to a mean generating function regression model both in historical data fit-ting and independent sample prediction. Key words Climate trend prediction. Mean generating function (MGF) - Artificial neural network (ANN) - Annual mean temperature (AMT)展开更多
A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improve...A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improvement of the linear model proposed by Solow et al. (1987). Both theoretical deduction and case calculation show that our version can search the turning point and period accurately and objectively. In particular it is fit for computer exploring the turning points in long-range records from stations covering a large area, thus avoiding subjective judgement by a usual drawing method.展开更多
Using daily temperature data from 599 Chinese weather stations during 1961-2007, the length change trends of four seasons dur- ing the past 47 years were analyzed. Results show that throughout the region, four seasons...Using daily temperature data from 599 Chinese weather stations during 1961-2007, the length change trends of four seasons dur- ing the past 47 years were analyzed. Results show that throughout the region, four seasons' lengths are: spring becomes shorter (-0.8 d/10yrs), summer becomes longer (3.2 d/10yrs), autumn (-0.5 d/10yrs) and winter (-1.6 d/10yrs) becomes shorter. This trend is different in spatial distribution, namely it is very obvious in northern than southern China, and also remarkable in eastern than western China. Summer change is most obvious, but autumn has little change comparatively. This trend is highly obvious in North, East, Central and South China. In the Southwest starting in the 21st century, summer becomes longer and winter shortens. The trend in the Plateau region since the 1980s is that spring becomes longer and winter shortens. The average annual temperature increased during the past 47 years, and the change of the average annual temperature precedes seasons' length. Thus, the average annual temperature has a certain influence on the length change of seasons.展开更多
Afghanistan is threatened by rangeland degradation.A quantitative visual analysis of Google Earth Imagery was used to systematically locate,characterize and quantify the current extent of rangelands in Afghanistan deg...Afghanistan is threatened by rangeland degradation.A quantitative visual analysis of Google Earth Imagery was used to systematically locate,characterize and quantify the current extent of rangelands in Afghanistan degraded as a consequence of dryland agriculture.Climate data were used in conjunction with dryland agriculture locations to establish a climate envelope comprised by temperature and mean annual precipitation to create a geographical mask known to contain dryland agriculture.Within this mask we created a grid of 100 km2 cells that we analyzed individually to access dryland agriculture extent.Climatic limits to sustainable dryland agriculture and areas of high restoration priority were also assessed as was the distribution of rain-fed agriculture with respect to the location of traditional migration routes for extensive livestock producers.The extents of agriculture in Afghanistan,at both upper and lower elevations,correlated most closely with mean annual temperature(MAT) at the upper elevation limits,and with mean annual precipitation(MAP) at the lower elevation limits.In total,dryland agriculture comprised 38,980 km2 of former native rangeland.Conversion was highest in the northwestern,northern and northeastern provinces of Herat,Badghis,Faryab,Jawzjan,Sar-e-Pul,Samangan,Balkh,Baghlan,Kunduz,Takhar and Badakhshan,with the highest percentage of conversion occurring in Takhar.An MAP value of 〈400 mm is perceived by farmers as the current climatic limit to sustainable dryland agriculture across the northern regions of the country.Uder this MAP value,approximately 27,677 km2 of converted rangeland met the need for restoration priority.Climate projections indicate that Afghanistan will become warmer and drier in the coming decades.One consequence of this trend is that the MAP threshold of 〈400 mm to sustainable dryland agriculture will become obsolete in the coming decades.Restoration of currently converted rangelands is needed to restore critical grazing areas as is the adoption of prudent range management policies to prevent further land degradation and support a vital livestock industry.Food security is at stake as the conversion of rangelands to unsustainable rain-fed agriculture may leave large tracks of land unusable for either agriculture or livestock production.展开更多
This paper summarizes research related to the 2012 record the NEWS (NASA (National Aeronautics and Space Administration) drought in the central United States conducted by members of Energy and Water cycle Study) W...This paper summarizes research related to the 2012 record the NEWS (NASA (National Aeronautics and Space Administration) drought in the central United States conducted by members of Energy and Water cycle Study) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Plains. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.展开更多
基金supported by a grant from the Russian Science Foundation(No.22-17-20012)(https://rscf.ru/project/22-17-20012)with equal financial support from the Government of the Republic of Khakassia。
文摘An analysis of the changes in vegetation cover on the territory of the Republic of Khakassia in 2000–2021 due to climatic trends was carried out based on the MODIS data.The changes in vegetation cover were estimated based on trends in Normalized Difference Vegetation Index(NDVI)and Enhanced Vegetation Index(EVI).In general,in the 21st century,an increase in the biomass of vegetation cover is observed.Positive trends were observed in 16%–22%of the territory,and negative only in 1%–3%.For about 20%of the analyzed territory,a significant influence of climate on the changes in vegetation cover was revealed.The most pronounced negative impact on vegetation cover was caused by summer air and soil temperatures,spring temperature,and summer winds,and the positive impact was caused by summer precipitation and soil moisture.The response of the vegetation cover to climate was non-uniform concerning the topography.Thus,a significant correlation with the amount of precipitation was observed for~20%–35%of vegetation growing below 600 m above sea level and for less than 5%above this elevation.The negative effect of summer temperatures on plants prevailed mainly at an elevation below~1400 m above sea level.Projected climate change is likely to lead to significant degradation of vegetation in the steppe and foreststeppe in Khakassia in the coming decades.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KGCX2-YW-356)the R & D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201006023)the National Natural Science Foundation of China (Grant No.40805032)
文摘In this study, the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China. Dynamical downscaling is performed using a 60-km horizontal resolution Regional Integrated Environmental Model System (RIEMS) forced by the NCEP-Department of Energy (DOE) reanalysis II (NCEP-2). The results show that this regional climate model (RCM) can not only produce dynamically consis- tent fine scale fields of atmosphere and land surface in the regional domain, but it also has the ability to minimize artificial climate trends existing in the global reanalysis to a certain extent. As compared to the observed 2-meter temperature anomaly averaged across China, our model can simulate the observed inter-annual variation and variability as well as reduce artificial climate trends in the reanalysis by approximately 0.10℃ decade-1 from 1980 to 2007. The RIEMS can effectively reduce artificial trends in global reanalysis for areas in western China, especially for regions with high altitude mountains and deserts, as well as introduce some new spurious changes in other local regions. The model simulations overesti- mated observed winter trends for most areas in eastern China with the exception of the Tibetan Plateau, and it greatly overestimated observed summer trends in the Si- chuan Basin located in southwest China. This implies that the dynamical downscaling of RCM for long-term trends has certain seasonal and regional dependencies due to imperfect physical processes and parameterizations.
基金supported by the open fund project of Shandong Provincial Key Laboratory of Ocean Engineering,Ocean University of China(No.kloe201901)the State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF201707).
文摘This study compared the differences in the wave climate in the South China Sea and North Indian Ocean under these two datasets:ERA-40 wave reanalysis and Mei’s hindcast wave data.In the numerical calculation of regional ocean waves,the wave climate characteristics exhibited significant bias if the influence of external swells(swells from afar)was not fully considered,which may provide an incorrect basis for global climate change analysis.1)The trends of the significant wave height(SWH)obtained from the two datasets showed significant differences,such as those of the Bay of Bengal and the Java Sea in June-July-August.For the past 45 years,SWH from ERA-40(SWH-ERA)exhibited a significant annual increase in low-latitude waters of the North Indian Ocean(0.2-0.6 cm yr^(-1))and South China Sea(0.2-0.8 cm yr^(-1)).2)In the Bay of Bengal,the SWH-ERA in each month was generally 0.5 m higher than the SWH from Mei’s hindcast wave data(SWH-Mei)and can reach 1.0 m higher in some months.3)In the Bay of Bengal,SWH-ERA and SWH-Mei increased significantly at annual rates of 0.13 and 0.27 cm yr^(-1),respectively.This increasing trend was mainly reflected after 1978.SWH-ERA showed a trough in 1975(1.33 m)and a crest in 1992(1.83 m),which were not reflected in SWH-Mei.
基金the National Natural Science Foundation of China(Grant Nos.42075056,41875080,41775065)the Research Program from Science and Technology Committee of Shanghai(20ZR1469700).
文摘The trends in annual precipitation and wind induced by tropical cyclones(TCs)over Shanghai during the last 40 years are estimated.Results indicate that there is a significant increasing trend in the annual total precipitation induced by TCs,which is related to the significant positive trends in daily precipitation and annual torrential rain days.Meanwhile,a significant decreasing trend shows in maximum sustained wind,which seems to be related to the downward trend in the intensity of TCs when affecting Shanghai.The annual frequencies of affected TCs,TC translation speed and distance from Shanghai when affecting Shanghai have no obvious tendency.The different trends in precipitation and wind suggested that a more comprehensive metric for assessing TCs'influence on society is necessary.
基金supported by the National Natural Science Foundation of China (Grant No. 41175080)the R&D Special Fund for the Public Welfare Industry (meteorology) (Grant No. GYHY201106018)
文摘The regionalization of climate in China is based on a three-level classification in terms of lasting days for accumulated temperature (AT),aridity index,and July mean temperature.Based on daily meteorological observational data from 756 stations,trends and interdecadal variation in indices for classifying temperature zones,moisture regions and climatic subregions in the period 1961-2010 are discussed.Results reveal that the nationwide AT ≥ 10℃C (AT10) and its lasting days are basically increasing,while aridity in northern Xinjiang is decreasing.The increasing trend of July mean temperature in North China is found to be notably larger than in South China.In terms of their national averages,a marked step increase of AT10 and its lasting period,as well as July mean temperature occurred around 1997,while the aridity index presents no such clear change.By comparing regionalization areas for 1998-2010 with those for 1961-97,it is found that the semi-humid,semi-dry and dry regions in the sub-temperate zone,as well as the humid region in the middle subtropical zone,have experienced substantial shrinkage in terms of area.In contrast,the areas of semi-dry and dry regions in the warm temperate zone,as well as the humid region in the south subtropical zone,present drastically increasing trends.Owing to the influence of such step changes that took place in 1997,that particular point in time should be given close attention in future studies regarding the regionalization of climate in China.
基金The Open Fund Project of Shandong Provincial Key Laboratory of Ocean EngineeringOcean University of China under contract No.kloe201901the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research under contract No.SKLEC-KF201707。
文摘The recognition on the trend of wind energy stability is still extremely rare,although it is closely related to acquisition efficiency,grid connection,equipment lifetime,and costs of wind energy utilization.Using the 40-year(1979–2018)ERA-Interim data from the European Center for Medium-Range Weather Forecasts,this study presented the spatial-temporal distribution and climatic trend of the stability of global offshore wind energy as well as the abrupt phenomenon of wind energy stability in key regions over the past 40 years with the climatic analysis method and Mann-Kendall(M-K)test.The results show the following 5 points.(1)According to the coefficient of variation(C_(v))of the wind power density,there are six permanent stable zones of global offshore wind energy:the southeast and northeast trade wind zones in the Indian,Pacific and Atlantic oceans,the Southern Hemisphere westerly,and a semi-permanent stable zone(North Indian Ocean).(2)There are six lowvalue zones for both seasonal variability index(S_(v))and monthly variability index(M_(v))globally,with a similar spatial distribution as that of the six permanent stable zones.M_(v) and S_(v) in the Arabian Sea are the highest in the world.(3)After C_(v),M_(v) and S_(v) are comprehensively considered,the six permanent stable zones have an obvious advantage in the stability of wind energy over other sea areas,with C_(v) below 0.8,M_(v) within 1.0,and S_(v) within 0.7 all the year round.(4)The global stability of offshore wind energy shows a positive climatic trend for the past four decades.C_(v),M_(v) and S_(v) have not changed significantly or decreased in most of the global ocean during 1979 to2018.That is,wind energy is flat or more stable,while the monthly and seasonal variabilities tend to shrink/smooth,which is beneficial for wind energy utilization.(5)C_(v) in the low-latitude Pacific and M_(v) and S_(v) in both the North Indian Ocean and the low-latitude Pacific have an obvious abrupt phenomenon at the end of the20th century.
基金National Natural Science Foundation of China, No.40171040Key Project of National Natural Science Foundation of China, No.40331006
文摘Trends of annual and monthly temperature, precipitation, potential evapotranspiration and aridity index were analyzed to understand climate change during the period 1971-2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56-Penmen-Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and minimum temperatures, solar radiation, relative humidity and wind speed. Results indicate generally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly potential evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simultaneous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.
基金Concentrated fund item of nationalscience and technology foundation work,No.2001DEA30029-0604Jiangsunaturalsciencefoundation,No.BK2005163
文摘Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be anolied in flood assessment and climate change fields.
基金supported by the National Basic Research Program of China (Grant Nos. 2009CB421401 and 2006CB400503)
文摘Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.
文摘[Objective] Effects of climate change on agriculture production were studied in order to provide basis for developing agriculture and adjusting agricultural structure.[Method] The conventional mathematical statistics method was adopted to analyze climate characteristics and change trends.[Result] Compared with the agricultural resources census in 1980,annual average sunshine hours and annual precipitation reduced by 257 h and 77 mm,respectively,while annual average temperature increased by 1.2 ℃.In recent 50 years,annual sunshine hours trend decreased by 482 h,and annual mean temperature trend rose by 2.55 ℃,while annual precipitation reduced by 185 mm.[Conclusion] The reduction of sunshine hours had great effect on agricultural facilities,and temperature increase could extend crop growth period and improve biomass yield,providing growth conditions for pests and germs,while the frequency of drought disaster was increased due to the decrease of precipitation.
基金Supported by The Youth Project of Science Fund in Guangxi (0991060)The Meteorological Science Research Fund Project of Tropical Ocean(200804)The Special Project Fund of Climate Change in China Meteorological Administration(CCSF-09-03)
文摘Based on the daily precipitation data of 87 meteorological observation stations in Guangxi during 1961-2008,the variation characteristics of precipitation concentration degree(PCD) in Guangxi were counted and analyzed by using Monte Carlo test method.The results showed that the climate warming in most areas of Guangxi was very obvious,and the annual precipitation concentration degree increased gradually from the northeast to the southwest in Guangxi.The precipitation concentration period was from the middle of April to the end of August and delayed from the northeast to the southwest in Guangxi.In the background which the global climate became warm,the annual precipitation in most areas of Guangxi had the trend which the precipitation concentrated strengthening.It was said that the probability of flood disaster had the increase trend.The precipitation concentration period had the earlier trend,which was more obvious in the north than in the south of Guangxi.The rainstorm concentration degree in the northwest of Guangxi and few parts had the decrease trend and had the increase trend in other areas.It was said that the probabilities of flood and mud-rock flow disasters increased.The rainstorm concentration periods in most areas had the later trend.
文摘[Objective] The research aimed to study the climate variation characteristics of frost in Shandong Province. [Method] The daily minimum surface temperature ≤ 0 ℃ in autumn or spring was as the frost index. Based on the daily minimum surface temperature data in 67 meteorological observatories of Shandong Province during 1961-2008, the variation characteristics of first, last frost dates and frost-free period in Shandong Province were analyzed by using the climate diagnosis analysis method. [Result] The climate characteristics of first, last frost dates and frost-free period had the obvious geographical differences in Shandong Province in recent 48 years. The extreme differences of first, last frost dates and frost-free period were all above the three times of their standard deviations. It illustrated that the dispersion degrees of first, last dates and frost-free period were all very big. The average first frost date postponed with 1.99 d/10 a velocity in Shandong Province in recent 48 years, and the last frost date advanced with 1.46 d/10 a velocity. The postponing range of first frost date was bigger than the advancing range of last frost date, and the frost-free period prolonged with 3.42 d/10 a velocity. Seen from the interdecadal variations, the first frost date started to obviously postpone, and the last frost date obviously advanced since the 1990s. The frost-free period also started to obviously prolong since the 1990s. [Conclusion] The research provided the certain reference for the predication, prevention of frost disaster and the structure adjustment of crops.
基金This work is supported by the research item on the TheoryMethod of Long Range Weather Forecasts
文摘Bused on January 1962-October 1993 mean value series of monthly mean temperature anomalies of 16 Antarctic stations on 10 standard isobanc surfaces from the surface to the 30 hPa,long term trends and periodic features of climate changes from the troposphere to the lower stratosphere over the Antarctic region are investigated by maximum entropy power spectrum analysis,and the relation between climate change of the stratosphere (troposphere) and tolal ozone (southern 500 hPa circulation) is discussed.
文摘Predictive assessments of the geomorphological systems’ behavior under climate warming in southern Siberia have been performed based on time-series data, using theoretical and empirical models of processes. High sensitivity and fast response of erosional, aeolian, and cryogenic processes to current climatic changes are presented. The current trends under changing functioning conditions of geomorphological systems while maintaining climatic trends have been determined. Areas with different targeting of morpholithogenesis are identified.
基金supported by the National Basic Research Program of China 2009CB421401 and 2006CB400503
文摘Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.
文摘In the context of 1905–1995 series from Nanjing and Hangzhou, study is undertaken of estab-lishing a predictive model of annual mean temperature in 1996–2005 to come over the Changjiang (Yangtze River) delta region through mean generating function and artificial neural network in combination. Results show that the established model yields mean error of 0.45°C for their abso-lute values of annual mean temperature from 10 yearly independent samples (1986–1995) and the difference between the mean predictions and related measurements is 0.156°C. The developed model is found superior to a mean generating function regression model both in historical data fit-ting and independent sample prediction. Key words Climate trend prediction. Mean generating function (MGF) - Artificial neural network (ANN) - Annual mean temperature (AMT)
基金This wirk is supported jointly National Natural Science Foundation of China and China Meteoroloical Administration 8th-Five-year Major Project Foundation.
文摘A two-phase trend model is presented to investigate the turning-point signals of evolution trend in long-term series of a climatic element. Based on nonlinear fitting, the revised model brings out more evident improvement of the linear model proposed by Solow et al. (1987). Both theoretical deduction and case calculation show that our version can search the turning point and period accurately and objectively. In particular it is fit for computer exploring the turning points in long-range records from stations covering a large area, thus avoiding subjective judgement by a usual drawing method.
基金supported by the National Natural Science Foundation of China (Grant No. 40875053)
文摘Using daily temperature data from 599 Chinese weather stations during 1961-2007, the length change trends of four seasons dur- ing the past 47 years were analyzed. Results show that throughout the region, four seasons' lengths are: spring becomes shorter (-0.8 d/10yrs), summer becomes longer (3.2 d/10yrs), autumn (-0.5 d/10yrs) and winter (-1.6 d/10yrs) becomes shorter. This trend is different in spatial distribution, namely it is very obvious in northern than southern China, and also remarkable in eastern than western China. Summer change is most obvious, but autumn has little change comparatively. This trend is highly obvious in North, East, Central and South China. In the Southwest starting in the 21st century, summer becomes longer and winter shortens. The trend in the Plateau region since the 1980s is that spring becomes longer and winter shortens. The average annual temperature increased during the past 47 years, and the change of the average annual temperature precedes seasons' length. Thus, the average annual temperature has a certain influence on the length change of seasons.
基金funded by the U.S.Agency for International Development (306-A-00-06-00521-00)
文摘Afghanistan is threatened by rangeland degradation.A quantitative visual analysis of Google Earth Imagery was used to systematically locate,characterize and quantify the current extent of rangelands in Afghanistan degraded as a consequence of dryland agriculture.Climate data were used in conjunction with dryland agriculture locations to establish a climate envelope comprised by temperature and mean annual precipitation to create a geographical mask known to contain dryland agriculture.Within this mask we created a grid of 100 km2 cells that we analyzed individually to access dryland agriculture extent.Climatic limits to sustainable dryland agriculture and areas of high restoration priority were also assessed as was the distribution of rain-fed agriculture with respect to the location of traditional migration routes for extensive livestock producers.The extents of agriculture in Afghanistan,at both upper and lower elevations,correlated most closely with mean annual temperature(MAT) at the upper elevation limits,and with mean annual precipitation(MAP) at the lower elevation limits.In total,dryland agriculture comprised 38,980 km2 of former native rangeland.Conversion was highest in the northwestern,northern and northeastern provinces of Herat,Badghis,Faryab,Jawzjan,Sar-e-Pul,Samangan,Balkh,Baghlan,Kunduz,Takhar and Badakhshan,with the highest percentage of conversion occurring in Takhar.An MAP value of 〈400 mm is perceived by farmers as the current climatic limit to sustainable dryland agriculture across the northern regions of the country.Uder this MAP value,approximately 27,677 km2 of converted rangeland met the need for restoration priority.Climate projections indicate that Afghanistan will become warmer and drier in the coming decades.One consequence of this trend is that the MAP threshold of 〈400 mm to sustainable dryland agriculture will become obsolete in the coming decades.Restoration of currently converted rangelands is needed to restore critical grazing areas as is the adoption of prudent range management policies to prevent further land degradation and support a vital livestock industry.Food security is at stake as the conversion of rangelands to unsustainable rain-fed agriculture may leave large tracks of land unusable for either agriculture or livestock production.
文摘This paper summarizes research related to the 2012 record the NEWS (NASA (National Aeronautics and Space Administration) drought in the central United States conducted by members of Energy and Water cycle Study) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Plains. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.