In“The Ice Palace,”F.Scott Fitzgerald utilizes the depiction of climate difference between the American south and north to show the nostalgia and topophilia of Sally Carrol,a southern“flapper.”The article situates...In“The Ice Palace,”F.Scott Fitzgerald utilizes the depiction of climate difference between the American south and north to show the nostalgia and topophilia of Sally Carrol,a southern“flapper.”The article situates this short story in the context of the social bias and regional stereotypes in American society in the 1920s.It focuses on the climate narratives and argues that the narration of climate difference between the South and the North serves as a covert progression in the story.This study may provide a new perspective to understanding Fitzgerald’s topographical consciousness in his fiction writing.展开更多
Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a m...Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.展开更多
The differences in the climatology of extratropical transition(ET) of western North Pacific tropical cyclones(TCs) were investigated in this study using the TCs best-track datasets of China Meteorological Administrati...The differences in the climatology of extratropical transition(ET) of western North Pacific tropical cyclones(TCs) were investigated in this study using the TCs best-track datasets of China Meteorological Administration(CMA),Japan Meteorological Agency(JMA) and the Joint Typhoon Warning Center(JTWC). The results show that the ET identification, ET completion time, and post-ET duration reported in the JTWC dataset are greatly different from those in CMA and JMA datasets during 2004-2010. However, the key differences between the CMA and JMA datasets from 1951 to 2010 are the ET identification and the post-ET duration, because of inconsistent objective ET criteria used in the centers. Further analysis indicates that annual ET percentage of CMA was lower than that of JMA, and exhibited an interannual decreasing trend, while that of JMA was an unchanged trend. The western North Pacific ET events occurred mainly during the period June to November. The latitude of ET occurrence shifted northward from February to August,followed by a southward shift. Most of ET events were observed between 35°N and 45°N. From a regional perspective,TCs tended to undergo ET in Japan and the ocean east to it. It is found that TCs which experienced the ET process at higher latitudes were generally more intense at the ET completion time. TCs completing the ET overland or offshore were weaker than those finishing the ET over the ocean. Most of the TCs weakened 24 h before the completion of ET.In contrast, 21%(27%) of the TCs showed an intensification process based on the CMA(JMA) dataset during the post-ET period. The results presented in this study indicate that consistent ET determination criteria are needed to reduce the uncertainty involved in ET identification among the centers.展开更多
Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu...Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.展开更多
The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned thei...The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.展开更多
Purpose-This paper tries to clarify the environmental impacts of a traditional building form which was developed more than 5000 years ago,under the force of harsh hot climates:courtyard building.A courtyard is an outd...Purpose-This paper tries to clarify the environmental impacts of a traditional building form which was developed more than 5000 years ago,under the force of harsh hot climates:courtyard building.A courtyard is an outdoor space which is entirely surrounded by buildings or walls.The main purpose is to show if this building form can reduce the energy demand of low-rise residential buildings in order to reduce CO_(2) emission which generally considered is the main root of climate change.Methodology-From a literature review on courtyard buildings several climatic aspects of this building form can be extracted.In this step,the paper focuses on the climatic impact(s)in the context of hot-arid,snow,temperate and tropical climates.Findings-Results for different configuration of courtyard building,natural elements used in it,and the situation of openings in different facades are the most important findings of this review paper.Research limitations-The research is limited to considering residential courtyard buildings in four climates;hot-arid,snow,temperate,and tropical(based on Koppen-Geiger climate classification).Practical implications-The results of the paper are general climatic characteristics of courtyard buildings.These characteristics can be used for designing new courtyard dwellings.Innovation-Although the background information of the paper is based on literature,the innovation is the comprehensive consideration and comparison of environmental characteristics in different climates which has never been done before.展开更多
The European Directive 2010/31 claims that by 2020 only (nearly-) ZEB (zero-energy-buildings) may be built. To reach this goal, it is pertinent for buildings to be energetically optimized first. The remaining ener...The European Directive 2010/31 claims that by 2020 only (nearly-) ZEB (zero-energy-buildings) may be built. To reach this goal, it is pertinent for buildings to be energetically optimized first. The remaining energy demand must then be covered by on-site renewable energies (PV, geothermal, etc.). With the area of use (energy demand) and the size of the building envelope/estate (renewable energy supply) in competition with each other, the maximum number of building stories will be most likely limited. For 15 different climatic locations worldwide, the energy demand of optimised office rooms has been simulated and compared with the possible renewable energy production on site. For every location, a good correlation has been found between the simulated energy demand and data like heating and cooling degree hours. Correspondent linear equations are given here. As another result, the maximum numbers of possible stories for ZEBS have been derived, being between 3 and 10 depending on the location.展开更多
This research aims at developing an innovative methodology and the related computational workflow to design energy efficient buildings equipped with climate responsive building skins able to respond dynamically to env...This research aims at developing an innovative methodology and the related computational workflow to design energy efficient buildings equipped with climate responsive building skins able to respond dynamically to environmental conditions changing over the time.This methodology,called Adaptive Building and Skin(AB&S),is applicable in different climate zones and consists of a computational form-finding method,which supports architects and engineers in the buildings’design process resulting in buildings with optimized energy performance and a high level of indoor and outdoor comfort under changing environmental conditions.The innovativeness of AB&S lies in the fact that it includes the entire design process and considers several internal and external inputs to find the best solutions at all scales of a project:starting from the micro urban-scale with the design of the site and of the building shape,down to the building-scale and finally the skin-scale.Applicability and functionality of AB&S has been tested and improved in the design of office buildings located in specific cities located in different climate zones(cold,temperate,tropical and subtropical).Results of the application in Berlin,Germany,are presented in detail in this paper.展开更多
The Asian summer monsoon(ASM) is a vast climate system, whose variability is critical to the livelihoods of billions of people across the Asian continent. During the past half-century, much progress has been made in u...The Asian summer monsoon(ASM) is a vast climate system, whose variability is critical to the livelihoods of billions of people across the Asian continent. During the past half-century, much progress has been made in understanding variations on a wide range of timescales, yet several significant issues remain unresolved. Of note are two long-standing problems concerning orbital-scale variations of the ASM.(1) Chinese loess magnetic susceptibility records show a persistent glacial-interglacial dominated ~100 kyr(thousand years) periodicity, while the cave oxygen-isotope(δ18 O) records reveal periodicity in an almost pure precession band(~20 kyr periodicity)—the "Chinese 100 kyr problem".(2) ASM records from the Arabian Sea and other oceans surrounding the Asian continent show a significant lag of 8–10 kyr to Northern Hemisphere summer insolation(NHSI), whereas the Asian cave δ18 O records follow NHSI without a significant lag—a discrepancy termed the "sea-land precession-phase paradox". How can we reconcile these differences? Recent and more refined model simulations now provide spatial patterns of rainfall and wind across the precession cycle, revealing distinct regional divergences in the ASM domain, which can well explain a large portion of the disparities between the loess, marine, and cave proxy records. Overall, we also find that the loess, marine, and cave records are indeed complementary rather than incompatible, with each record preferentially describing a certain aspect of ASM dynamics. Our study provides new insight into the understanding of different hydroclimatic proxies and largely reconciles the "Chinese 100 kyr problem" and "sea-land precession-phase paradox".展开更多
The energy consumption of office buildings in China has been growing significantly in recent years. Obviously, there are significant relationships between building envelope and the energy consumption of office buildin...The energy consumption of office buildings in China has been growing significantly in recent years. Obviously, there are significant relationships between building envelope and the energy consumption of office buildings. The 8 key building envelope influencing factors were found in this paper to evaluate their effects on the energy consumption of the air-conditioning system. The typical combinations of the key influencing factors were performed in Trnsy simulation. Then on the basis of the simulated results, the multiple regression models were developed respectively for the four climates of China--hot summer and warm winter, hot summer and cold winter, cold, and severely cold. According to the analysis of regression coefficients, the appropriate building envelope design schemes were discussed in different climates. At last, the regression model evaluations consisting of the simulation evaluations and the actual case evaluations were performed to verify the feasibility and accuracy of the regression models. The error rates are within i5% in the simulation evaluations and within + 15% in the actual case evaluations. It is believed that the regression models developed in this paper can be used to estimate the energy consumption of office buildings in different climates when various building envelope designs are considered.展开更多
The purpose of this paper is to analyze the energy consumption (EC) and find out the determining factors of energy-efficient office building cases according to specific case studies in typical cities of different cl...The purpose of this paper is to analyze the energy consumption (EC) and find out the determining factors of energy-efficient office building cases according to specific case studies in typical cities of different climate zones in China. The investigated building cases were located in four cities (Beijing, Ningbo, Nanjing and Shenzhen) of three architecture thermotechnical design zones (cold zone, hot summer and cold winter zone, hot summer and warm winter zone). The analysis indicates that the energy consumption index (ECI) of these four cases ranges from 41.06 to 74.23kW.h/(m^2.a). Besides, the outdoor climate can change the EC of air conditioning/ heating systems, and further determine the monthly volatility of the total EC of the whole building.展开更多
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage i...Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.展开更多
Semi-open spaces-largely incorporated in vernacular dwellings in Cyprus during the 19th and 20th centuries-formed diachronically significant socio-cultural, functional and environmental features of the vernacular arch...Semi-open spaces-largely incorporated in vernacular dwellings in Cyprus during the 19th and 20th centuries-formed diachronically significant socio-cultural, functional and environmental features of the vernacular architecture of the area. The climate of the Eastern Mediterranean region, i.e., hot summers and mild winters, encouraged the use of open weather protected spaces, thus leading to the widespread incorporation of such spaces in the vernacular architecture of the region. This paper focuses on the interconnections between architectural forms and human comfort, convenience or pleasure in relation to the semiopen spaces found in the vernacular architecture of Cyprus-an island in the Eastern Mediterranean region. For the purpose of this research, characteristic traditional settlements found in the coastal, lowland and mountainous areas-which represent three different climatic regions and topographies of the island-were selected for an in-depth investigation. The findings confirm a high frequency of semi-open spaces, as well as the existence of a remarkable richness of typologies. Although semi-open spaces constitute a fundamental part of the structure of these vernacular dwellings in all climatic regions examined, they dominate in the lowland regions due to the particularly hot climate, as well as the specific activities of the inhabitants of these areas. The prevailing architectural forms and constructions of these spaces in each climatic region under investigation was found to be closely adapted to the local resources, terrain and climate, while also being related to the social, household and agricultural needs of the inhabitants, thus underlining their sustainable and locus-specific conception. Research findings can contribute towards critically re-thinking semi-open spaces and their inherent value in rehabilitation projects, as well as in contemporary residential architecture.展开更多
Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelo...Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate.展开更多
文摘In“The Ice Palace,”F.Scott Fitzgerald utilizes the depiction of climate difference between the American south and north to show the nostalgia and topophilia of Sally Carrol,a southern“flapper.”The article situates this short story in the context of the social bias and regional stereotypes in American society in the 1920s.It focuses on the climate narratives and argues that the narration of climate difference between the South and the North serves as a covert progression in the story.This study may provide a new perspective to understanding Fitzgerald’s topographical consciousness in his fiction writing.
基金the National Natural Science Foundation of China(42271289).
文摘Ecological stability is a core issue in ecological research and holds significant implications forhumanity. The increased frequency and intensity of drought and wet climate events resulting from climatechange pose a major threat to global ecological stability. Variations in stability among different ecosystemshave been confirmed, but it remains unclear whether there are differences in stability within the sameterrestrial vegetation ecosystem under the influence of climate events in different directions and intensities.China's grassland ecosystem includes most grassland types and is a good choice for studying this issue.This study used the Standardized Precipitation Evapotranspiration Index-12 (SPEI-12) to identify thedirections and intensities of different types of climate events, and based on Normalized DifferenceVegetation Index (NDVI), calculated the resistance and resilience of different grassland types for 30consecutive years from 1990 to 2019 (resistance and resilience are important indicators to measurestability). Based on a traditional regression model, standardized methods were integrated to analyze theimpacts of the intensity and duration of drought and wet events on vegetation stability. The resultsshowed that meadow steppe exhibited the highest stability, while alpine steppe and desert steppe had thelowest overall stability. The stability of typical steppe, alpine meadow, temperate meadow was at anintermediate level. Regarding the impact of the duration and intensity of climate events on vegetationecosystem stability for the same grassland type, the resilience of desert steppe during drought was mainlyaffected by the duration. In contrast, the impact of intensity was not significant. However, alpine steppewas mainly affected by intensity in wet environments, and duration had no significant impact. Ourconclusions can provide decision support for the future grassland ecosystem governance.
基金National Natural Science Foundation of China(41465003)National Natural Science Foundation of China(41665006)China National Special Funding Project for Meteorology(GYHY201406010,GYHY201306071)
文摘The differences in the climatology of extratropical transition(ET) of western North Pacific tropical cyclones(TCs) were investigated in this study using the TCs best-track datasets of China Meteorological Administration(CMA),Japan Meteorological Agency(JMA) and the Joint Typhoon Warning Center(JTWC). The results show that the ET identification, ET completion time, and post-ET duration reported in the JTWC dataset are greatly different from those in CMA and JMA datasets during 2004-2010. However, the key differences between the CMA and JMA datasets from 1951 to 2010 are the ET identification and the post-ET duration, because of inconsistent objective ET criteria used in the centers. Further analysis indicates that annual ET percentage of CMA was lower than that of JMA, and exhibited an interannual decreasing trend, while that of JMA was an unchanged trend. The western North Pacific ET events occurred mainly during the period June to November. The latitude of ET occurrence shifted northward from February to August,followed by a southward shift. Most of ET events were observed between 35°N and 45°N. From a regional perspective,TCs tended to undergo ET in Japan and the ocean east to it. It is found that TCs which experienced the ET process at higher latitudes were generally more intense at the ET completion time. TCs completing the ET overland or offshore were weaker than those finishing the ET over the ocean. Most of the TCs weakened 24 h before the completion of ET.In contrast, 21%(27%) of the TCs showed an intensification process based on the CMA(JMA) dataset during the post-ET period. The results presented in this study indicate that consistent ET determination criteria are needed to reduce the uncertainty involved in ET identification among the centers.
基金funded by the Funds for Creative Research Groups of China (41121001)the National Basic Research Program (2013CBA01801)+3 种基金the National Natural Science Foundation of China (41301069, 41471058)the State Key Laboratory of Cryospheric Science foundation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (SKLCS-ZZ-2012-01-01)West Light Program for Talent Cultivation of the Chinese Academy of Sciencesthe Special Financial Grant from the China Postdoctoral Science Foundation ( 2014T70948)
文摘Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.
基金Under the auspices of the National Key R&D Program of China(No.2017YFC0504701)Science and Technology Service Network Initiative Project of Chinese Academy of Sciences(No.KFJ-STS-ZDTP-036)+1 种基金Fundamental Research Funds for the Central Universities(No.GK201703053)China Postdoctoral Science Foundation(No.2017M623114)
文摘The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.
文摘Purpose-This paper tries to clarify the environmental impacts of a traditional building form which was developed more than 5000 years ago,under the force of harsh hot climates:courtyard building.A courtyard is an outdoor space which is entirely surrounded by buildings or walls.The main purpose is to show if this building form can reduce the energy demand of low-rise residential buildings in order to reduce CO_(2) emission which generally considered is the main root of climate change.Methodology-From a literature review on courtyard buildings several climatic aspects of this building form can be extracted.In this step,the paper focuses on the climatic impact(s)in the context of hot-arid,snow,temperate and tropical climates.Findings-Results for different configuration of courtyard building,natural elements used in it,and the situation of openings in different facades are the most important findings of this review paper.Research limitations-The research is limited to considering residential courtyard buildings in four climates;hot-arid,snow,temperate,and tropical(based on Koppen-Geiger climate classification).Practical implications-The results of the paper are general climatic characteristics of courtyard buildings.These characteristics can be used for designing new courtyard dwellings.Innovation-Although the background information of the paper is based on literature,the innovation is the comprehensive consideration and comparison of environmental characteristics in different climates which has never been done before.
文摘The European Directive 2010/31 claims that by 2020 only (nearly-) ZEB (zero-energy-buildings) may be built. To reach this goal, it is pertinent for buildings to be energetically optimized first. The remaining energy demand must then be covered by on-site renewable energies (PV, geothermal, etc.). With the area of use (energy demand) and the size of the building envelope/estate (renewable energy supply) in competition with each other, the maximum number of building stories will be most likely limited. For 15 different climatic locations worldwide, the energy demand of optimised office rooms has been simulated and compared with the possible renewable energy production on site. For every location, a good correlation has been found between the simulated energy demand and data like heating and cooling degree hours. Correspondent linear equations are given here. As another result, the maximum numbers of possible stories for ZEBS have been derived, being between 3 and 10 depending on the location.
文摘This research aims at developing an innovative methodology and the related computational workflow to design energy efficient buildings equipped with climate responsive building skins able to respond dynamically to environmental conditions changing over the time.This methodology,called Adaptive Building and Skin(AB&S),is applicable in different climate zones and consists of a computational form-finding method,which supports architects and engineers in the buildings’design process resulting in buildings with optimized energy performance and a high level of indoor and outdoor comfort under changing environmental conditions.The innovativeness of AB&S lies in the fact that it includes the entire design process and considers several internal and external inputs to find the best solutions at all scales of a project:starting from the micro urban-scale with the design of the site and of the building shape,down to the building-scale and finally the skin-scale.Applicability and functionality of AB&S has been tested and improved in the design of office buildings located in specific cities located in different climate zones(cold,temperate,tropical and subtropical).Results of the application in Berlin,Germany,are presented in detail in this paper.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41888101 & 41731174)。
文摘The Asian summer monsoon(ASM) is a vast climate system, whose variability is critical to the livelihoods of billions of people across the Asian continent. During the past half-century, much progress has been made in understanding variations on a wide range of timescales, yet several significant issues remain unresolved. Of note are two long-standing problems concerning orbital-scale variations of the ASM.(1) Chinese loess magnetic susceptibility records show a persistent glacial-interglacial dominated ~100 kyr(thousand years) periodicity, while the cave oxygen-isotope(δ18 O) records reveal periodicity in an almost pure precession band(~20 kyr periodicity)—the "Chinese 100 kyr problem".(2) ASM records from the Arabian Sea and other oceans surrounding the Asian continent show a significant lag of 8–10 kyr to Northern Hemisphere summer insolation(NHSI), whereas the Asian cave δ18 O records follow NHSI without a significant lag—a discrepancy termed the "sea-land precession-phase paradox". How can we reconcile these differences? Recent and more refined model simulations now provide spatial patterns of rainfall and wind across the precession cycle, revealing distinct regional divergences in the ASM domain, which can well explain a large portion of the disparities between the loess, marine, and cave proxy records. Overall, we also find that the loess, marine, and cave records are indeed complementary rather than incompatible, with each record preferentially describing a certain aspect of ASM dynamics. Our study provides new insight into the understanding of different hydroclimatic proxies and largely reconciles the "Chinese 100 kyr problem" and "sea-land precession-phase paradox".
文摘The energy consumption of office buildings in China has been growing significantly in recent years. Obviously, there are significant relationships between building envelope and the energy consumption of office buildings. The 8 key building envelope influencing factors were found in this paper to evaluate their effects on the energy consumption of the air-conditioning system. The typical combinations of the key influencing factors were performed in Trnsy simulation. Then on the basis of the simulated results, the multiple regression models were developed respectively for the four climates of China--hot summer and warm winter, hot summer and cold winter, cold, and severely cold. According to the analysis of regression coefficients, the appropriate building envelope design schemes were discussed in different climates. At last, the regression model evaluations consisting of the simulation evaluations and the actual case evaluations were performed to verify the feasibility and accuracy of the regression models. The error rates are within i5% in the simulation evaluations and within + 15% in the actual case evaluations. It is believed that the regression models developed in this paper can be used to estimate the energy consumption of office buildings in different climates when various building envelope designs are considered.
文摘The purpose of this paper is to analyze the energy consumption (EC) and find out the determining factors of energy-efficient office building cases according to specific case studies in typical cities of different climate zones in China. The investigated building cases were located in four cities (Beijing, Ningbo, Nanjing and Shenzhen) of three architecture thermotechnical design zones (cold zone, hot summer and cold winter zone, hot summer and warm winter zone). The analysis indicates that the energy consumption index (ECI) of these four cases ranges from 41.06 to 74.23kW.h/(m^2.a). Besides, the outdoor climate can change the EC of air conditioning/ heating systems, and further determine the monthly volatility of the total EC of the whole building.
基金The National Basic Research Program of China(973 Program),No.2011CB403206No.2012CB416906National Key Technology R&D Program,No.2013BAC03B04
文摘Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.
基金This research is based on the findings of two research programmes with the acronyms BioCultural and BioVernacular funded by the University of Cyprus,2013-15 and by the Republic of Cyprus and the European Regional Development Fund,2012-14,respectively.
文摘Semi-open spaces-largely incorporated in vernacular dwellings in Cyprus during the 19th and 20th centuries-formed diachronically significant socio-cultural, functional and environmental features of the vernacular architecture of the area. The climate of the Eastern Mediterranean region, i.e., hot summers and mild winters, encouraged the use of open weather protected spaces, thus leading to the widespread incorporation of such spaces in the vernacular architecture of the region. This paper focuses on the interconnections between architectural forms and human comfort, convenience or pleasure in relation to the semiopen spaces found in the vernacular architecture of Cyprus-an island in the Eastern Mediterranean region. For the purpose of this research, characteristic traditional settlements found in the coastal, lowland and mountainous areas-which represent three different climatic regions and topographies of the island-were selected for an in-depth investigation. The findings confirm a high frequency of semi-open spaces, as well as the existence of a remarkable richness of typologies. Although semi-open spaces constitute a fundamental part of the structure of these vernacular dwellings in all climatic regions examined, they dominate in the lowland regions due to the particularly hot climate, as well as the specific activities of the inhabitants of these areas. The prevailing architectural forms and constructions of these spaces in each climatic region under investigation was found to be closely adapted to the local resources, terrain and climate, while also being related to the social, household and agricultural needs of the inhabitants, thus underlining their sustainable and locus-specific conception. Research findings can contribute towards critically re-thinking semi-open spaces and their inherent value in rehabilitation projects, as well as in contemporary residential architecture.
基金This research was funded by National Key R&D Program of China(2017YFC0702800),which is gratefully acknowledged.
文摘Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate.