In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multipl...In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.展开更多
An improved zero-interpolation method with signal clipping to improve fiber nonlinearity tolerance in the long-haul coherent optical orthogonal frequency division multiplexing system (CO-OFDM) is presented. The new ...An improved zero-interpolation method with signal clipping to improve fiber nonlinearity tolerance in the long-haul coherent optical orthogonal frequency division multiplexing system (CO-OFDM) is presented. The new technique is implemented by interpolating zero subcarriers and selecting the odd subcarriers to carry data and clipping conventional CO-OFDM signal at zero. With such a scheme,the effect of fiber nonlinearity can be miti-gated,and the wanted signal carried on odd subcarriers is or-thogonal to clipping noise,which falls on even frequencies. Simu-lation shows that the system Q value is improved by more than 2 dB at the length of 960 km展开更多
基金support by the National Natural Science Foundation of China (61401360)the Fundamental Research Funds for the Central Universities (3102017zy026)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (2016JM6017)the Scientific Research Program Funded by Shaanxi Provincial Education Department (16JK1702)
文摘In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.
基金Supported by the National Natural Science Foundation of China (60871075)
文摘An improved zero-interpolation method with signal clipping to improve fiber nonlinearity tolerance in the long-haul coherent optical orthogonal frequency division multiplexing system (CO-OFDM) is presented. The new technique is implemented by interpolating zero subcarriers and selecting the odd subcarriers to carry data and clipping conventional CO-OFDM signal at zero. With such a scheme,the effect of fiber nonlinearity can be miti-gated,and the wanted signal carried on odd subcarriers is or-thogonal to clipping noise,which falls on even frequencies. Simu-lation shows that the system Q value is improved by more than 2 dB at the length of 960 km