A repeated sequence DNA fragment, L5B-4, was cloned from the 5 kb BamHI DNA fragments of rat genomic DNA. The expressions of the L5B-4 DNA fragment are different in liver and hepatoma cells. The amounts of transcripts...A repeated sequence DNA fragment, L5B-4, was cloned from the 5 kb BamHI DNA fragments of rat genomic DNA. The expressions of the L5B-4 DNA fragment are different in liver and hepatoma cells. The amounts of transcripts in hepatoma cells are lower in nucleus and higher in cytoplasm, especially in polysomal RNA, as compared with that in liver cells. The alteration shown in polysomal RNA of hepatoma cells seems to be specific. These results are discussed with respect to the possible function of this repeated DNA and its variation in hepatoma cells.展开更多
It is well known that Tn5B1-4 (commercially known as the High Five) cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines.But ...It is well known that Tn5B1-4 (commercially known as the High Five) cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines.But the characteristics of the cell line do not always remain stable and may change upon continuous passage.Recently an alphanodavirus,named Tn5 Cell Line Virus (or TNCL Virus),was identified in High Five cells in particular.Therefore,we established a new cell line,QB-Tn9-4s,from Trichoplusia ni,which was determined to be free of TNCL virus by RT-PCR analysis.In this paper,we describe the development of a novel cell clone,QB-CL-B,from a low passage QB-Tn9-4s cell line and report its susceptibility to AcMNPV,and the level of recombinant protein production.This cell clone was similar to its parental cells QB-Tn9-4s and Tn5B1-4 cells in morphology and growth rate;although it also showed approximately the same responses to AcMNPV infection and production of occlusion bodies,there were higher levels of recombinant protein production in comparison to QB-Tn9-4s (parental cells) and High5 cells.展开更多
TDF1(transcription-drived fragment) was homologous to the predicted S. lycopersicum nonspecific lipid-transfer protein,nsLTP 2-like(91%), and it was significantly upregulated in response to C. fulvum(cladosporium fulv...TDF1(transcription-drived fragment) was homologous to the predicted S. lycopersicum nonspecific lipid-transfer protein,nsLTP 2-like(91%), and it was significantly upregulated in response to C. fulvum(cladosporium fulvum) infection in tomato plants.In this experiment, the full-length cDNA of nsLTP 2-like was cloned using RACE technology based on the sequence of TDF1(GenBank: JZ717725). A full-length, 625 bp(GenBank: KU366289), cDNA sequence, which with 98% similarity to nsLTP 2-like gene(GenBank: XM015233692) was obtained. This cDNA contains an ORF(open reading frame) with full-length of 345 bp, coding of 114 amino acids, including 12.3% Ala and Gly. Protein molecular weight was 11.51 ku, the isoelectric point(pI) was 8.99, and average overall hydrophilicity was 0.412, with one phosphorylation sites, belonging to volatile acidic nuclear protein. Secondary structure prediction showed that α-Helix accounts for 30.7%, extension chain for 12.28%, β-corner for 9.65%, and random coil for 47.37%. Through comparative analysis of the homology among species, it was found that the amino acid sequence of tomato nsLTP 2-like protein had a high similarity with other plants, and with a specific conserved sequence which might related features in nsLTP 2-like protein. It also be analyzed the gene expression pattern of tomato in different parts and under different stress conditions.The results showed that nsLTP 2-like gene was up-regulated in varying degrees, under the condition of cold stress, exogenous hormone spraying and cladosporium fulvum infection. Therefore, it was speculated that the gene played a role in response to abiotic and biotic stress in tomato.展开更多
A primary cDNA expression library with a titer of 5.0 × 105 PFU mL-1 was constructed from mRNA extracted from larval Haemaphysalis qinghaiensis ticks in order to identify certain genes,which would then be used as...A primary cDNA expression library with a titer of 5.0 × 105 PFU mL-1 was constructed from mRNA extracted from larval Haemaphysalis qinghaiensis ticks in order to identify certain genes,which would then be used as candidate molecules for development of effective vaccines to control this parasite.Totally 11 positive clones,which designated as HqL01-11,were obtained by immunoscreening of the library using a polyclonal antibody generated in rabbit with larval tick protein extract.Results of sequence analysis from BLASTN searching revealed that 6 of them had no significant homology with the adult H.qinghaiensis ticks’ known genes,4 of them had no significant homology with all genes deposited in GenBank database.HqL07,HqL08,HqL09,and HqL11 were deposited to GenBank database,and accession numbers were EF605263,EF605264,EF605265,and EF605266,respectively.Subsequently,HqL07 and HqL09 were expressed in vitro and the molecular weights of the corresponding expressed products were 60 and 70 kDa,respectively.Western blot analyses showed that HqL07 and HqL09 had immunogenicity.This study laid the foundation for future production of genetically engineered vaccines for the immunological control of H.qinghaiensis.展开更多
A novel strategy to enhance the expression efficiency of cloned target gene in Escherichia coli was developed. The whole expression cartridge , consisting of promoter. SD sequence , target gene and transcription termi...A novel strategy to enhance the expression efficiency of cloned target gene in Escherichia coli was developed. The whole expression cartridge , consisting of promoter. SD sequence , target gene and transcription terminator, was tandem repeatedly engineered into a expression plasmid. Consequently, the copy number of specific gene was increased substantially, leading to the improvement of expression efficiency.Using this approach, a recombinant plasmid , designed as PLYD, was constructed and transformated into the Escherichia coli strain DH5α. Upon induction , the desired protein was synthesized in a considerable level and accumulated up to 63% of the total cell proteins. The present study revealed that tandem repeating of expression cartridge provided a convenient means to improve expression level efficiently.展开更多
Tropomyosin (TM) plays a critical role in skeletal and cardiac muscle development and function. To assess the fimctional significance of a-TM in Japanese flounder (Paralichthys olivaceus) development and metamorph...Tropomyosin (TM) plays a critical role in skeletal and cardiac muscle development and function. To assess the fimctional significance of a-TM in Japanese flounder (Paralichthys olivaceus) development and metamorphosis, cDNA from Japanese flounder was cloned and a-TM mRNA measured during development and metamorphosis. The full-length cDNA is 1 191 bp, including a 5'- untranslated region of 114 bp, a Y-UTR of 222 bp, and an open reading frame of 855 bp encoding a polypeptide of 284 amino acids. Real-time quantitative PCR revealed that a-TM mRNA is initially expressed in unfertilized ovum, indicating the a-TM gene is maternal. Relatively low mRNA levels were observed in different embryonic stages. A higher level of a-TM mRNA was detected 3 days post hatching (dph), while the highest level was measured at 29 dph (metamorphic climax) after which it declined towards the end of metamorphosis. The expression of a-TM mRNA was up-regulated in thyroid hormone-treated larvae at 36 dph, but there was no marked difference at other stages when compared to control animals. After thiourea treatment, the expression of a-TM mRNA declined slightly. These data provide basic information that can be utilized in further studies into the role of a-TM in P olivaceus development and metamorphosis.展开更多
s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of t...s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B_~16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. ~s-Lap/GFP fusion protein can be expressed in CHO and B_~16 cells with a high rate expression in the nuclei.展开更多
Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study lever...Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.展开更多
Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression relat...Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.展开更多
Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby ...Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.展开更多
AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the cha...AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.展开更多
The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial ex...The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.展开更多
Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein Psb...Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.展开更多
Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based...Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity.展开更多
In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect anal...In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.展开更多
Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.I...Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.In deep learning the most widely utilized architecture is Convolutional Neural Networks(CNN)are taught discriminatory traits in a supervised environment.In comparison to other classic neural networks,CNN makes use of a limited number of artificial neurons,therefore it is ideal for the recognition and processing of wheat gene sequences.Wheat is an essential crop of cereals for people around the world.Wheat Genotypes identification has an impact on the possible development of many countries in the agricultural sector.In quantitative genetics prediction of genetic values is a central issue.Wheat is an allohexaploid(AABBDD)with three distinct genomes.The sizes of the wheat genome are quite large compared to many other kinds and the availability of a diversity of genetic knowledge and normal structure at breeding lines of wheat,Therefore,genome sequence approaches based on techniques of Artificial Intelligence(AI)are necessary.This paper focuses on using the Wheat genome sequence will assist wheat producers in making better use of their genetic resources and managing genetic variation in their breeding program,as well as propose a novel model based on deep learning for offering a fundamental overview of genomic prediction theory and current constraints.In this paper,the hyperparameters of the network are optimized in the CNN to decrease the requirement for manual search and enhance network performance using a new proposed model built on an optimization algorithm and Convolutional Neural Networks(CNN).展开更多
Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air duri...Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air during the low tide and produces large quantities of mucus as an external covering. The relation between low tide and mucus secretion is still unclear, and what is the role of mucin during arial exposure is not yet investigated. This study hypothesised that the mucin genes in A. veratra would have significantly high expression in response to aerial exposure. Therefore, the aim of current study was to examine and analyses the response of A. veratra mucins in response to an experiment involving three hours of aerial exposure. To achieve this, aim the RNA-sequencing and bioinformatics analyses were used to examine the expression profile of A. veratra mucin genes in response to aerial exposure. The generated results have shown that, Mucin4-like and mucin5B-like were up-regulated in response to the three hours of aerial exposure in A. veratra. This finding shows a significant role of mucin5B-like and mucin4-like genes in response to air stress at low tide. The data generated from this study could be used in conjunction with future mucin gene studies of sea anemones and other cnidarians to compare A. veratra mucin gene expression results across time, and to extend our understanding of mucin stress response in this phylum.展开更多
BACKGROUND The ubiquitin-proteasome pathway(UPP)has been proven to play important roles in cancer.AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver ca...BACKGROUND The ubiquitin-proteasome pathway(UPP)has been proven to play important roles in cancer.AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes.METHODS In this study,UPP-related E1,E2,E3,deubiquitylating enzyme,and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based RESULTS Five genes(including autophagy related 10,proteasome 20S subunit alpha 8,proteasome 20S subunit beta 2,ubiquitin specific peptidase 17 like family member 2,and ubiquitin specific peptidase 8)were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer.Among training,validation,and Gene Expression Omnibus sets,the overall survival differed significantly between the high-risk and low-risk groups.The expression of the five genes was significantly associated with immunocyte infiltration,tumor stage,and postoperative recurrence.A total of 111 differentially expressed genes(DEGs)were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways.Cell division cycle 20,Kelch repeat and BTB domain containing 11,and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival.CONCLUSION We have constructed a prognosis predictive model in patients with liver cancer,which contains five genes that associate with immunocyte infiltration,tumor stage,and postoperative recurrence.展开更多
Background: While sunscreen has been accepted as a mainline defence against photodamage from ultraviolet, visible light and near-infrared radiation, there appears to be a lack of research into photorepair. The concept...Background: While sunscreen has been accepted as a mainline defence against photodamage from ultraviolet, visible light and near-infrared radiation, there appears to be a lack of research into photorepair. The concept of protecting the skin during the day and repairing cellular damage at night is intuitive, yet specific strategies revolving around combinations of proven reparative active ingredients remain unelucidated. Purpose: To investigate the efficacy of a solar repair Formulation following ultraviolet and environmental exposure in order to improve overall skin health and appearance through three hypotheses: The Formulation increases expression of DNA repair mechanisms markers;The Formulation enhances overall skin appearance through reducing signs of inflammation, elevating hydration, reinforcing skin firmness and amplifying radiance;In-Vivo efficacy test results are aligned with measured gene expression changes. Methods: The Formulation (#6NIC1.V1.1-1) was tested for: In-vitro LDH cytotoxicity activity, In-vitro qPCR gene expression with and without ultraviolet exposure on a reconstructed 3-dimensional skin model, and In-Vivo efficacy study on a panel of 22 participants objectively and subjectively. Results: Skin radiance, firmness, hydration, redness, and inflammation are significantly improved after In-Vivo skin exposure to the Formulation and environmental challenges such as ultraviolet radiation. These outcomes were confirmed by in-vitro genetic testing on a reconstructed human skin model. Conclusion: The studies allowed us to identify and group results in four main skin functions that were significantly enhanced following the application of the Formulation: firmness, hydration, radiance and soothing.展开更多
The surge in popularity of rustic videos has spawned a great number of Internet memes, such as Internet trendy words growing from dialects and strange pronunciations, picture memes made from video screenshots, and mes...The surge in popularity of rustic videos has spawned a great number of Internet memes, such as Internet trendy words growing from dialects and strange pronunciations, picture memes made from video screenshots, and mesmerizing music with a vernacular flavor. Due to their reproducibility, social interaction, and involvement, these rustic videos adhere to the fundamental logic of the propagation of online memes. Rustic videos are widely disseminated as online memes on TikTok (the Chinese version), are often reproduced and used by young people in social contact, and have become a unique linguistic symbol in modern internet culture. As a symbolic carrier that transports the consciousness of the video creator and viewer, it is widely employed in the communication and engagement of young people on a regular basis, progressively altering their linguistic expression. This specific semiotic interaction has deconstructed and recreated the conventional media culture spectacle. This research examines the influence of rustic videos on TikTok on the linguistic expressions of modern youth from the perspectives of meme theory and semiotics, as well as the impact of rustic videos on the media spectacle from the standpoint of media spectacle theory. It also examines in depth the effects of the popularity of rustic videos on China’s economy and culture.展开更多
文摘A repeated sequence DNA fragment, L5B-4, was cloned from the 5 kb BamHI DNA fragments of rat genomic DNA. The expressions of the L5B-4 DNA fragment are different in liver and hepatoma cells. The amounts of transcripts in hepatoma cells are lower in nucleus and higher in cytoplasm, especially in polysomal RNA, as compared with that in liver cells. The alteration shown in polysomal RNA of hepatoma cells seems to be specific. These results are discussed with respect to the possible function of this repeated DNA and its variation in hepatoma cells.
基金supported in part by the Chinese National Basic Research Program(973)2009CB118900Chinese National Science Foundation Project30771451Boyce Thompson Institute Project BTI-QAU1-23-2007
文摘It is well known that Tn5B1-4 (commercially known as the High Five) cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines.But the characteristics of the cell line do not always remain stable and may change upon continuous passage.Recently an alphanodavirus,named Tn5 Cell Line Virus (or TNCL Virus),was identified in High Five cells in particular.Therefore,we established a new cell line,QB-Tn9-4s,from Trichoplusia ni,which was determined to be free of TNCL virus by RT-PCR analysis.In this paper,we describe the development of a novel cell clone,QB-CL-B,from a low passage QB-Tn9-4s cell line and report its susceptibility to AcMNPV,and the level of recombinant protein production.This cell clone was similar to its parental cells QB-Tn9-4s and Tn5B1-4 cells in morphology and growth rate;although it also showed approximately the same responses to AcMNPV infection and production of occlusion bodies,there were higher levels of recombinant protein production in comparison to QB-Tn9-4s (parental cells) and High5 cells.
基金Supported by the National Key R&D Program of China(2017YFD0101900)China Agriculture Research System(CARS-23-A-16)the Science Foundation of Heilongjiang Province(C2017024)
文摘TDF1(transcription-drived fragment) was homologous to the predicted S. lycopersicum nonspecific lipid-transfer protein,nsLTP 2-like(91%), and it was significantly upregulated in response to C. fulvum(cladosporium fulvum) infection in tomato plants.In this experiment, the full-length cDNA of nsLTP 2-like was cloned using RACE technology based on the sequence of TDF1(GenBank: JZ717725). A full-length, 625 bp(GenBank: KU366289), cDNA sequence, which with 98% similarity to nsLTP 2-like gene(GenBank: XM015233692) was obtained. This cDNA contains an ORF(open reading frame) with full-length of 345 bp, coding of 114 amino acids, including 12.3% Ala and Gly. Protein molecular weight was 11.51 ku, the isoelectric point(pI) was 8.99, and average overall hydrophilicity was 0.412, with one phosphorylation sites, belonging to volatile acidic nuclear protein. Secondary structure prediction showed that α-Helix accounts for 30.7%, extension chain for 12.28%, β-corner for 9.65%, and random coil for 47.37%. Through comparative analysis of the homology among species, it was found that the amino acid sequence of tomato nsLTP 2-like protein had a high similarity with other plants, and with a specific conserved sequence which might related features in nsLTP 2-like protein. It also be analyzed the gene expression pattern of tomato in different parts and under different stress conditions.The results showed that nsLTP 2-like gene was up-regulated in varying degrees, under the condition of cold stress, exogenous hormone spraying and cladosporium fulvum infection. Therefore, it was speculated that the gene played a role in response to abiotic and biotic stress in tomato.
基金supported by the Na- tional High-Tech R&D Program (2006AA10A207)the National Key Technology R&D Program (2007- BAD40B06)+1 种基金the Natural Resource Platform Project (2005DKA21104)the National Natural Science Foundation of China (30270992) as well
文摘A primary cDNA expression library with a titer of 5.0 × 105 PFU mL-1 was constructed from mRNA extracted from larval Haemaphysalis qinghaiensis ticks in order to identify certain genes,which would then be used as candidate molecules for development of effective vaccines to control this parasite.Totally 11 positive clones,which designated as HqL01-11,were obtained by immunoscreening of the library using a polyclonal antibody generated in rabbit with larval tick protein extract.Results of sequence analysis from BLASTN searching revealed that 6 of them had no significant homology with the adult H.qinghaiensis ticks’ known genes,4 of them had no significant homology with all genes deposited in GenBank database.HqL07,HqL08,HqL09,and HqL11 were deposited to GenBank database,and accession numbers were EF605263,EF605264,EF605265,and EF605266,respectively.Subsequently,HqL07 and HqL09 were expressed in vitro and the molecular weights of the corresponding expressed products were 60 and 70 kDa,respectively.Western blot analyses showed that HqL07 and HqL09 had immunogenicity.This study laid the foundation for future production of genetically engineered vaccines for the immunological control of H.qinghaiensis.
文摘A novel strategy to enhance the expression efficiency of cloned target gene in Escherichia coli was developed. The whole expression cartridge , consisting of promoter. SD sequence , target gene and transcription terminator, was tandem repeatedly engineered into a expression plasmid. Consequently, the copy number of specific gene was increased substantially, leading to the improvement of expression efficiency.Using this approach, a recombinant plasmid , designed as PLYD, was constructed and transformated into the Escherichia coli strain DH5α. Upon induction , the desired protein was synthesized in a considerable level and accumulated up to 63% of the total cell proteins. The present study revealed that tandem repeating of expression cartridge provided a convenient means to improve expression level efficiently.
基金This work was supported by the National Science Foundation of China (31172392) and the Foundation for Graduate Excellent Paper Breeding Program by Shanghai Ocean University (B-5201-11-000101)
文摘Tropomyosin (TM) plays a critical role in skeletal and cardiac muscle development and function. To assess the fimctional significance of a-TM in Japanese flounder (Paralichthys olivaceus) development and metamorphosis, cDNA from Japanese flounder was cloned and a-TM mRNA measured during development and metamorphosis. The full-length cDNA is 1 191 bp, including a 5'- untranslated region of 114 bp, a Y-UTR of 222 bp, and an open reading frame of 855 bp encoding a polypeptide of 284 amino acids. Real-time quantitative PCR revealed that a-TM mRNA is initially expressed in unfertilized ovum, indicating the a-TM gene is maternal. Relatively low mRNA levels were observed in different embryonic stages. A higher level of a-TM mRNA was detected 3 days post hatching (dph), while the highest level was measured at 29 dph (metamorphic climax) after which it declined towards the end of metamorphosis. The expression of a-TM mRNA was up-regulated in thyroid hormone-treated larvae at 36 dph, but there was no marked difference at other stages when compared to control animals. After thiourea treatment, the expression of a-TM mRNA declined slightly. These data provide basic information that can be utilized in further studies into the role of a-TM in P olivaceus development and metamorphosis.
文摘s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B_~16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. ~s-Lap/GFP fusion protein can be expressed in CHO and B_~16 cells with a high rate expression in the nuclei.
文摘Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.
基金the Key Scientific Research Projects of Henan Province to College Youth Backbone Teacher(No.2021118)the National Key Research and Development Program of China(No.2021YFE0112000)。
文摘Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.
基金supported by the National Natural Science Foundation of China (No. U20A2002)China Postdoctoral Science Foundation (No. 2023T160284)recipient of a research productivity fellowship from CNPq (National Council of Scientific and Technological Development) in Brazil
文摘Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
基金Supported by the Natural Science Foundation of Shandong Province,China(No.ZR2023MA069)the Medical and Health Technology Development Project of Shandong Province,China(No.202202050602)+1 种基金College Students’Innovation and Entrepreneurship Training Program(No.S202410438017)the Graduate Student Research Grant from Shandong Second Medical University.
文摘AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
基金supported by the National Natural Science Foundation of China under Grant No.62276051the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC0640Medical Industry Information Integration Collaborative Innovation Project of Yangtze Delta Region Institute under Grant No.U0723002。
文摘The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.
基金supported by National Natural Science Foundation of China(32060466)Chinese Academy of Agricultural Sciences。
文摘Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.
文摘Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity.
基金the Science and Technology Project of State Grid Corporation of China under Grant No.5700-202318292A-1-1-ZN.
文摘In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the National Research Foundation of Korea(NRF)grant funded by theKorea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘Deep learning(DL)plays a critical role in processing and converting data into knowledge and decisions.DL technologies have been applied in a variety of applications,including image,video,and genome sequence analysis.In deep learning the most widely utilized architecture is Convolutional Neural Networks(CNN)are taught discriminatory traits in a supervised environment.In comparison to other classic neural networks,CNN makes use of a limited number of artificial neurons,therefore it is ideal for the recognition and processing of wheat gene sequences.Wheat is an essential crop of cereals for people around the world.Wheat Genotypes identification has an impact on the possible development of many countries in the agricultural sector.In quantitative genetics prediction of genetic values is a central issue.Wheat is an allohexaploid(AABBDD)with three distinct genomes.The sizes of the wheat genome are quite large compared to many other kinds and the availability of a diversity of genetic knowledge and normal structure at breeding lines of wheat,Therefore,genome sequence approaches based on techniques of Artificial Intelligence(AI)are necessary.This paper focuses on using the Wheat genome sequence will assist wheat producers in making better use of their genetic resources and managing genetic variation in their breeding program,as well as propose a novel model based on deep learning for offering a fundamental overview of genomic prediction theory and current constraints.In this paper,the hyperparameters of the network are optimized in the CNN to decrease the requirement for manual search and enhance network performance using a new proposed model built on an optimization algorithm and Convolutional Neural Networks(CNN).
文摘Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air during the low tide and produces large quantities of mucus as an external covering. The relation between low tide and mucus secretion is still unclear, and what is the role of mucin during arial exposure is not yet investigated. This study hypothesised that the mucin genes in A. veratra would have significantly high expression in response to aerial exposure. Therefore, the aim of current study was to examine and analyses the response of A. veratra mucins in response to an experiment involving three hours of aerial exposure. To achieve this, aim the RNA-sequencing and bioinformatics analyses were used to examine the expression profile of A. veratra mucin genes in response to aerial exposure. The generated results have shown that, Mucin4-like and mucin5B-like were up-regulated in response to the three hours of aerial exposure in A. veratra. This finding shows a significant role of mucin5B-like and mucin4-like genes in response to air stress at low tide. The data generated from this study could be used in conjunction with future mucin gene studies of sea anemones and other cnidarians to compare A. veratra mucin gene expression results across time, and to extend our understanding of mucin stress response in this phylum.
基金the Tianjin Municipal Natural Science Foundation,No.21JCYBJC01110。
文摘BACKGROUND The ubiquitin-proteasome pathway(UPP)has been proven to play important roles in cancer.AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes.METHODS In this study,UPP-related E1,E2,E3,deubiquitylating enzyme,and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based RESULTS Five genes(including autophagy related 10,proteasome 20S subunit alpha 8,proteasome 20S subunit beta 2,ubiquitin specific peptidase 17 like family member 2,and ubiquitin specific peptidase 8)were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer.Among training,validation,and Gene Expression Omnibus sets,the overall survival differed significantly between the high-risk and low-risk groups.The expression of the five genes was significantly associated with immunocyte infiltration,tumor stage,and postoperative recurrence.A total of 111 differentially expressed genes(DEGs)were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways.Cell division cycle 20,Kelch repeat and BTB domain containing 11,and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival.CONCLUSION We have constructed a prognosis predictive model in patients with liver cancer,which contains five genes that associate with immunocyte infiltration,tumor stage,and postoperative recurrence.
文摘Background: While sunscreen has been accepted as a mainline defence against photodamage from ultraviolet, visible light and near-infrared radiation, there appears to be a lack of research into photorepair. The concept of protecting the skin during the day and repairing cellular damage at night is intuitive, yet specific strategies revolving around combinations of proven reparative active ingredients remain unelucidated. Purpose: To investigate the efficacy of a solar repair Formulation following ultraviolet and environmental exposure in order to improve overall skin health and appearance through three hypotheses: The Formulation increases expression of DNA repair mechanisms markers;The Formulation enhances overall skin appearance through reducing signs of inflammation, elevating hydration, reinforcing skin firmness and amplifying radiance;In-Vivo efficacy test results are aligned with measured gene expression changes. Methods: The Formulation (#6NIC1.V1.1-1) was tested for: In-vitro LDH cytotoxicity activity, In-vitro qPCR gene expression with and without ultraviolet exposure on a reconstructed 3-dimensional skin model, and In-Vivo efficacy study on a panel of 22 participants objectively and subjectively. Results: Skin radiance, firmness, hydration, redness, and inflammation are significantly improved after In-Vivo skin exposure to the Formulation and environmental challenges such as ultraviolet radiation. These outcomes were confirmed by in-vitro genetic testing on a reconstructed human skin model. Conclusion: The studies allowed us to identify and group results in four main skin functions that were significantly enhanced following the application of the Formulation: firmness, hydration, radiance and soothing.
文摘The surge in popularity of rustic videos has spawned a great number of Internet memes, such as Internet trendy words growing from dialects and strange pronunciations, picture memes made from video screenshots, and mesmerizing music with a vernacular flavor. Due to their reproducibility, social interaction, and involvement, these rustic videos adhere to the fundamental logic of the propagation of online memes. Rustic videos are widely disseminated as online memes on TikTok (the Chinese version), are often reproduced and used by young people in social contact, and have become a unique linguistic symbol in modern internet culture. As a symbolic carrier that transports the consciousness of the video creator and viewer, it is widely employed in the communication and engagement of young people on a regular basis, progressively altering their linguistic expression. This specific semiotic interaction has deconstructed and recreated the conventional media culture spectacle. This research examines the influence of rustic videos on TikTok on the linguistic expressions of modern youth from the perspectives of meme theory and semiotics, as well as the impact of rustic videos on the media spectacle from the standpoint of media spectacle theory. It also examines in depth the effects of the popularity of rustic videos on China’s economy and culture.