期刊文献+
共找到117,094篇文章
< 1 2 250 >
每页显示 20 50 100
Databasing Molecular Identities of Sugarcane (Saccharum spp.) Clones Constructed with Microsatellite (SSR) DNA Markers 被引量:15
1
作者 Yong-Bao Pan 《American Journal of Plant Sciences》 2010年第2期87-94,共8页
This paper reports the development of the first SSR marker-based sugarcane (Saccharum spp.) molecular identity database in the world. Since 2005, 1,025 sugarcane clones were genotyped, including 811 Louisiana, 45 Flor... This paper reports the development of the first SSR marker-based sugarcane (Saccharum spp.) molecular identity database in the world. Since 2005, 1,025 sugarcane clones were genotyped, including 811 Louisiana, 45 Florida, 39 Texas, 130 foreign, and eight consultant/seed company clones. Genotyping was done on a fluorescence-capillary electrophoresis detection platform involving 21 highly polymorphic SSR markers that could potentially amplify 144 distinctive DNA fragments. Genotyping data were processed with the GeneMapper? software to reveal electrophoregrams that were manually checked against the 144 fragments. The presence (A) or absence (C) of these 144 fragments in any sugarcane clone was recorded in an affixed sequence order as a DNAMAN? file to represent its molecular identity being achieved into a local molecular identity database. The molecular identity database has been updated annually by continued genotyping of newly assigned sugarcane clones. The database provides molecular descriptions for new cultivar registration articles, enables sugarcane breeders to identify mis-labeled sugarcane clones in crossing programs and determine the paternity of cross progeny, and ensures the desired cultivars are grown in farmers’ fields. 展开更多
关键词 SUGARCANE (Saccharum spp.) Breeding SSR Marker molecular Identity Database
下载PDF
Structural analysis and molecular modeling of twoantitrichosanthin IgE clones from phage antibody library
2
作者 LIZONGDONG YURENYUAN 《Cell Research》 SCIE CAS CSCD 1997年第2期171-178,共8页
Recently we constructed a murine IgE phage surfacedisplay library and screened out two IgE (Fab) cloneswith specific binding activity to Trichosanthin (TCS). Inthis work, the Vε and Vκ genes of the two clones werese... Recently we constructed a murine IgE phage surfacedisplay library and screened out two IgE (Fab) cloneswith specific binding activity to Trichosanthin (TCS). Inthis work, the Vε and Vκ genes of the two clones weresequenced and their putative germline gene usages werestudied. On the basis of the known 3D structure of Trichosanthin and antibody, molecular modeling was carriedout to study the antigen-antibody interaction. The possible antigenic determinant sites on the surface of TCSrecognized by both the clones were analyzed, and the reaction forces between TCS and two Fab fragments werealso analyzed respectively. 展开更多
关键词 Anti-Trichosanthin IgE molecular modeling phage surface display library antigenic determinants
下载PDF
Mechanism Study on the Effect of Retarder on Polyurethane Setting Time Based on Molecular Simulation
3
作者 WU Yuxuan XU Wenyuan +1 位作者 YU Tianlai JI Yongcheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期224-231,共8页
This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setti... This study identified castor oil and phosphate ester as effective retarders through setting time,tensile,and flexural tests,and determined their optimal dosages.The mechanism by which phosphate ester affects the setting time of polyurethane was further investigated using molecular dynamics simulations.Fourier transform infrared spectroscopy was also employed to systematically study the physical and chemical interactions between phosphate esters and polyurethane materials.The results demonstrate that a 1%concentration of phosphate ester provides the most effective retarding effect with minimal impact on the strength of polyurethane.When phosphate ester is added to the B component of the two-component polyurethane system,its interaction energy with component A decreases,as do the diffusion coefficient and aggregation degree of component B on the surface of component A.This reduction in interaction slows the setting time.Additionally,the addition of phosphate ester to polyurethane leads to the disappearance or weakening of functional groups,indicating competitive interactions within the phosphate ester components that inhibit the reaction rate. 展开更多
关键词 POLYURETHANE RETARDER setting time molecular dynamics diffusion coefficient
下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
4
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
下载PDF
Molecular Structure Tailoring of Organic Spacers for High‑Performance Ruddlesden–Popper Perovskite Solar Cells
5
作者 Pengyun Liu Xuejin Li +6 位作者 Tonghui Cai Wei Xing Naitao Yang Hamidreza Arandiyan Zongping Shao Shaobin Wang Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期314-357,共44页
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P... Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications. 展开更多
关键词 Ruddlesden-Popper perovskites Low-dimensional perovskite solar cells Organic spacers molecular structure Design strategies
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
6
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
7
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties molecular dynamics simulation Radial distribution functions
下载PDF
Molecular breakthroughs in modern plant breeding techniques
8
作者 Mughair Abdul Aziz Khaled Masmoudi 《Horticultural Plant Journal》 2025年第1期15-41,共27页
Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in... Advancements in molecular approaches have been utilized to breed crops with a wide range of economically valuable traits to develop superior cultivars.This review provides a concise overview of modern breakthroughs in molecular plant production.Genotyping and high-throughput phenotyping methods for predictive plant breeding are briefly discussed.In this study,we explore contemporary molecular breeding techniques for producing desirable crop varieties.These techniques include cisgenesis,clustered regularly interspaced short palindromic repeat(CRISPR/Cas9)gene editing,haploid induction,and de novo domestication.We examine the speed breeding approach-a strategy for cultivating plants under controlled conditions.We further highlight the significance of modern breeding technologies in efficiently utilizing agricultural resources for crop production in urban areas.The deciphering of crop genomes has led to the development of extensive DNA markers,quantitative trait loci(QTLs),and pangenomes associated with various desirable crop traits.This shift to the genotypic selection of crops considerably expedites the plant breeding process.Based on the plant population used,the connection between genotypic and phenotypic data provides several genetic elements,including genes,markers,and alleles that can be used in genomic breeding and gene editing.The integration of speed breeding with genomic-assisted breeding and cutting-edge genome editing tools has made it feasible to rapidly manipulate and generate multiple crop cycles and accelerate the plant breeding process.Breakthroughs in molecular techniques have led to substantial improvements in modern breeding methods. 展开更多
关键词 Plant breeding molecular approaches GENOTYPE PHENOTYPE Crop traits
下载PDF
Diagnosis and treatment of lung cancer:A molecular perspective
9
作者 Yuan Xiong Long Cheng +3 位作者 Yu-Jie Zhou Wei-Hong Ge Ming Qian Hui Yang 《World Journal of Clinical Oncology》 2025年第3期1-7,共7页
This editorial comments on the review by Da Silva et al,published in the World Journal of Clinical Oncology which focuses on the molecular perspectives of lung cancer.With the rapid development of molecular technology... This editorial comments on the review by Da Silva et al,published in the World Journal of Clinical Oncology which focuses on the molecular perspectives of lung cancer.With the rapid development of molecular technology,new diagnostic methods are constantly emerging,including liquid biopsy,the identification of gene mutations,and the monitoring biomarkers,thus providing precise in-formation with which to identify the occurrence and development of lung cancer.Biomarkers,such as circulating tumor cells,circulating tumor DNA,and cir-culating RNA can provide helpful information for clinical application.Common types of genetic mutations and immune checkpoints include epidermal growth factor receptor,anaplastic lymphoma kinase,c-ROS proto-oncogene 1,progra-mmed death-1 and cytotoxic T-lymphocyte-associated protein.According to specific biomarkers,targeted therapy and immunotherapy can improve survival outcomes based on the types of gene mutation and immune checkpoints.The application of molecular approaches can facilitate our ability to control the progression of disease and select appropriate therapeutic strategies for patients with lung cancer. 展开更多
关键词 Lung cancer molecular Oncogenic mutations Biomarkers Liquid biopsy Targeted therapy IMMUNOTHERAPY
下载PDF
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
10
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
下载PDF
Advances and challenges in molecular understanding, early detection, and targeted treatment of liver cancer
11
作者 Ji Shi Xu Zhu Jun-Bo Yang 《World Journal of Hepatology》 2025年第1期8-17,共10页
In this review,we explore the application of next-generation sequencing in liver cancer research,highlighting its potential in modern oncology.Liver cancer,particularly hepatocellular carcinoma,is driven by a complex ... In this review,we explore the application of next-generation sequencing in liver cancer research,highlighting its potential in modern oncology.Liver cancer,particularly hepatocellular carcinoma,is driven by a complex interplay of genetic,epigenetic,and environmental factors.Key genetic alterations,such as mutations in TERT,TP53,and CTNNB1,alongside epigenetic modifications such as DNA methylation and histone remodeling,disrupt regulatory pathways and promote tumorigenesis.Environmental factors,including viral infections,alcohol consum-ption,and metabolic disorders such as nonalcoholic fatty liver disease,enhance hepatocarcinogenesis.The tumor microenvironment plays a pivotal role in liver cancer progression and therapy resistance,with immune cell infiltration,fibrosis,and angiogenesis supporting cancer cell survival.Advances in immune check-point inhibitors and chimeric antigen receptor T-cell therapies have shown po-tential,but the unique immunosuppressive milieu in liver cancer presents challenges.Dysregulation in pathways such as Wnt/β-catenin underscores the need for targeted therapeutic strategies.Next-generation sequencing is accele-rating the identification of genetic and epigenetic alterations,enabling more precise diagnosis and personalized treatment plans.A deeper understanding of these molecular mechanisms is essential for advancing early detection and developing effective therapies against liver cancer. 展开更多
关键词 Liver cancer molecular mechanisms Next-generation sequencing Early detection Wnt/β-catenin signaling
下载PDF
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
12
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil ANTIOXIDANT molecular mechanism molecular design antioxidant performance
下载PDF
Insight of Natural Compounds Halimane Diterpenoids against Mycobacterium tuberculosis: Virtual Screening, DFT, Drug-Likeness, and Molecular Dynamics Approach
13
作者 Laurent Gael Eyia Andiga Boris Davy Bekono +3 位作者 Désiré Mama Bikele Pie Pascal Onguéné Amoa Luc Calvin Owono Owono Luc Léonard Mbaze Meva’a 《Computational Molecular Bioscience》 2024年第2期35-58,共24页
In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb... In the purpose to design novel antituberculosis (anti-TB) drugs agents against Mycobacterium tuberculosis (Mtb), we have built a molecular library around 42 Halimane Diterpenoids isolated from natural sources. Two Mtb enzymes drug targets (Mtb Mycothiol S-transferase and Mtb Homoserine transacetylase) have been adopted. The pharmacological potential was investigated through molecular docking, molecular dynamics simulation, density functional theory (gas phase and water) and ADMET analysis. Our results indicate that (2R,5R,6S)-1,2,3,4,5,6,7,8-octahydro-5-((E)-5-hydroxy-3-methylpent-3-enyl)-1,1,5,6-tetramethylnaphtha-lene-2-ol (compound 20) has displays higher docking score with each of the selected drug targets. In addition, this molecule exhibits a satisfactory drug potential activity and a good chemical reactivity. Its improved kinetic stability in the Mtb Mycothiol S-transferase enzyme reflects its suitability as a novel inhibitor of Mtb growth. This molecule has displayed a good absorption potential. Our results also show that its passive passage of the intestinal permeability barrier is more effective than that of first-line treatments (ethambutol, isoniazid). In the same way, this anti-TB druglikeness has shown to be able to cross the blood brain barrier. 展开更多
关键词 Antituberculosis Druglikeness Density Functional Theory Halimane Diterpenoids molecular Docking molecular Dynamics Simulation
下载PDF
Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease
14
作者 Mo-Yan Zhang Shu-Qin Zheng 《World Journal of Diabetes》 SCIE 2024年第7期1562-1588,共27页
BACKGROUND Diabetic kidney disease(DKD)is the primary cause of end-stage renal disease.The Astragalus-Coptis drug pair is frequently employed in the management of DKD.However,the precise molecular mechanism underlying... BACKGROUND Diabetic kidney disease(DKD)is the primary cause of end-stage renal disease.The Astragalus-Coptis drug pair is frequently employed in the management of DKD.However,the precise molecular mechanism underlying its therapeutic effect remains elusive.AIM To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways.METHODS The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform.The targets were predicted using the SwissTargetPrediction database,while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database.DKD targets were acquired from the GeneCards,Online Mendelian Inheritance in Man database,and DisGeNET databases,with common targets identified through the Venny platform.The protein-protein interaction network and the“disease-active ingredient-target”network of the common targets were constructed utilizing the STRING database and Cytoscape software,followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients.Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichments were performed using the DAVID database.The tissue and organ distributions of key targets were evaluated.PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets.Finally,molecular dynamics(MD)simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins.RESULTS A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified.There were 273 common targets between DKD and the Astragalus-Coptis drug pair.Through protein-protein interaction network topology analysis,we identified 9 core active ingredients and 10 key targets.GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes,including protein phosphorylation,negative regulation of apoptosis,inflammatory response,and endoplasmic reticulum unfolded protein response.These pathways are mainly associated with the advanced glycation end products(AGE)-receptor for AGE products signaling pathway in diabetic complications,as well as the Lipid and atherosclerosis.Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets.Notably,the quercetin-AKT serine/threonine kinase 1(AKT1)and quercetin-tumor necrosis factor(TNF)protein complexes exhibited exceptional stability.CONCLUSION This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients,targets,and signaling pathways.We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD.Furthermore,we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF,providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment. 展开更多
关键词 Astragalus membranaceus Coptis chinensis Franch Diabetic kidney disease Network pharmacology molecular docking molecular dynamics simulation
下载PDF
Personalized medicine:Clinical oncology on molecular view of treatment
15
作者 Rafick Costa Dos Santos Da Silva Nathalia de Andrade Simon +5 位作者 AndréAlves Dos Santos Gabriel De Melo Olegário Jayne Ferreira Da Silva Naide Oliveira Sousa Manuel Alvarez Troncoso Corbacho Fabrício Freire de Melo 《World Journal of Clinical Oncology》 2024年第8期992-1001,共10页
Cancer,the second leading global cause of death,impacts both physically and emotionally.Conventional treatments such as surgeries,chemotherapy,and radiotherapy have adverse effects,driving the need for more precise ap... Cancer,the second leading global cause of death,impacts both physically and emotionally.Conventional treatments such as surgeries,chemotherapy,and radiotherapy have adverse effects,driving the need for more precise approaches.Precision medicine enables more targeted treatments.Genetic mapping,alongside other molecular biology approaches,identifies specific genes,contributing to accurate prognoses.The review addresses,in clinical use,a molecular perspective on treatment.Biomarkers like alpha-fetoprotein,beta-human chorionic gonadotropin,5-hydroxyindoleacetic acid,programmed death-1,and cytotoxic T lymphocyte-associated protein 4 are explored,providing valuable information.Bioinformatics,with an emphasis on artificial intelligence,revolutionizes the analysis of biological data,offering more accurate diagnoses.Techniques like liquid biopsy are emphasized for early detection.Precision medicine guides therapeutic strategies based on the molecular characteristics of the tumor,as evidenced in the molecular subtypes of breast cancer.Classifications allow personalized treatments,highlighting the role of trastuzumab and endocrine therapies.Despite the benefits,challenges persist,including high costs,tumor heterogeneity,and ethical issues.Overcoming obstacles requires collaboration,ensuring that advances in molecular biology translate into accessible benefits for all. 展开更多
关键词 ONCOLOGY NEOPLASIA molecular biology Personalized medicine molecular Markers Cancer
下载PDF
Exploring the molecular mechanism of action of curcumin for the treatment of diabetic retinopathy,using network pharmacology,molecular docking,and molecular dynamics simulation
16
作者 Yuan-Yuan Gan Yan-Mei Xu +4 位作者 Quan Shu Qi-Zhi Huang Tian-Long Zhou Ju-Fang Liu Wei Yu 《Integrative Medicine Discovery》 2024年第8期1-10,共10页
Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCa... Background:Based on network pharmacology and molecular docking,the present study investigated the mechanism of curcumin(CUR)in diabetic retinopathy treatment.Methods:Based on the DisGeNET,Swiss TargetPrediction,GeneCards,Online Mendelian Inheritance in Man,Gene Expression Omnibus,and Comparative Toxicogenomics Database,the intersection core targets of CUR and diabetic retinopathy were identified.The intersection target was imported into the STRING database to obtain the protein-protein interaction map.According to the Database for Annotation,Visualization and Integrated Discovery database,the intersected targets were enriched in Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways.Then Cytoscape 3.9.1 is used to make the drug-target-disease-pathway network.The mechanism of CUR and diabetic retinopathy was further verified by molecular docking and molecular dynamics simulation.Results:There were 203 intersecting targets of CUR and diabetic retinopathy identified.1320 GO entries were enriched for GO functions,which were primarily involved in the composition of cells such as identical protein binding,protein binding,enzyme binding,etc.It was found that 175 pathways were enriched using Kyoto Encyclopedia of Genes and Genomes pathway enrichment methods,which were mainly included in the lipid and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications,pathways in cancer,etc.In the molecular docking analysis,CUR was found to have a good ability to bind to the core targets of albumin,IL-1B,and IL-6.The binding of albumin to CUR was further verified by molecular dynamics simulation.Conclusion:As a result of this study,CUR may exert a role in the treatment of diabetic retinopathy through multi-target and multi-pathway regulation,which indicates a possible direction of future research. 展开更多
关键词 CURCUMIN diabetic retinopathy network pharmacology molecular docking molecular dynamics simulation
下载PDF
Collective Molecular Machines: Multidimensionality and Reconfigurability
17
作者 Bin Wang Yuan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期309-340,共32页
Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generat... Molecular machines are key to cellular activity where they are involved in converting chemical and light energy into efficient mechanical work.During the last 60 years,designing molecular structures capable of generating unidirectional mechanical motion at the nanoscale has been the topic of intense research.Effective progress has been made,attributed to advances in various fields such as supramolecular chemistry,biology and nanotechnology,and informatics.However,individual molecular machines are only capable of producing nanometer work and generally have only a single functionality.In order to address these problems,collective behaviors realized by integrating several or more of these individual mechanical units in space and time have become a new paradigm.In this review,we comprehensively discuss recent developments in the collective behaviors of molecular machines.In particular,collective behavior is divided into two paradigms.One is the appropriate integration of molecular machines to efficiently amplify molecular motions and deformations to construct novel functional materials.The other is the construction of swarming modes at the supramolecular level to perform nanoscale or microscale operations.We discuss design strategies for both modes and focus on the modulation of features and properties.Subsequently,in order to address existing challenges,the idea of transferring experience gained in the field of micro/nano robotics is presented,offering prospects for future developments in the collective behavior of molecular machines. 展开更多
关键词 molecular machines Collective control Collective behaviors DNA Biomolecular motors
下载PDF
Exploring the molecular mechanism of Corydalis yanhusuo against prostate cancer based on network pharmacology and molecular docking validation
18
作者 Ying Zhu Junwei Lu Jumin Xie 《Asian Journal of Traditional Medicines》 2024年第5期241-265,共25页
The molecular mechanism underlying Corydalis Yanhusuo’s therapeutic potential in prostate cancer(PCa)treatment was elucidated using network pharmacology and molecular docking.Nineteen active ingredients,399 drug targ... The molecular mechanism underlying Corydalis Yanhusuo’s therapeutic potential in prostate cancer(PCa)treatment was elucidated using network pharmacology and molecular docking.Nineteen active ingredients,399 drug targets,1790 disease targets and 143 intersection targets were identified.Ten core targets were screened from the protein-protein interaction network.Enrichment analysis revealed 133 GO terms and 114 KEGG pathways.Corydalis Yanhusuo may potentially treat prostate cancer through pathways such as the Rap1 signaling pathway,phospholipase D signaling pathway,Ras signaling pathway,VEGF signaling pathway and JAK-STAT signaling pathway.Significant differences in expression were observed for EGFR,PDGFRA,PIK3CA,PIK3CD,PIK3CG and PIK3R1.Molecular docking and dynamics simulation analysis showed low binding energy between active components and the six core genes of Corydalis Yanhusuo,indicating a favorable docking effect.This study shows that Corydalis Yanhusuo exhibits promise in prostate cancer treatment through a synergistic“multi-component-multi-target-multi-pathway”effect. 展开更多
关键词 Corydalis Yanhusuo prostate cancer network pharmacology molecular mechanism molecular docking
下载PDF
Predicting bioactive compounds and cancer-related molecular targets of lotus seedpod (Receptaculum Nelumbinis) based on network pharmacology and molecular docking
19
作者 Jian-Lin Shen Meng-Tong Zhang +8 位作者 Fei Li Jia-Yu Huang Quan-Sheng Xu Han-Yue Zhang Jun Zhang Jing Li Yan-Ping Li Qi Zou Xiao-Yin Wang 《Food and Health》 2024年第2期14-41,共28页
Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This stu... Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This study aims at predicting its bioactive compounds and cancer-related molecular targets against six cancers,including lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.Methods:Network pharmacology and molecular docking methods were performed.Results:Network pharmacology results indicated that 14 core compounds(liensinine,tetrandrine,lysicamine,tricin,sanleng acid,cireneol G,ricinoleic acid,linolenic acid,5,7-dihydroxycoumarin,apigenin,luteolin,morin,quercetin and isorhamnetin)and 10 core targets(AKT1,ESR1,HSP90AA1,JUN,MAPK1,MAPK3,PIK3CA,PIK3R1,SRC and STAT3)were screened for lotus seedpod against the six cancers.Molecular docking analysis suggested that the binding abilities between the core compounds and the core targets were mostly strong.GO analysis revealed that the intersected targets between the bioactive compounds of lotus seedpod and the six cancers were significantly related to biological processes,cell compositions and molecular functions.KEGG analysis showed that PI3K-Akt,TNF,Ras,MAPK,HIF-1 and C-type lectin receptor signaling pathways were notably involved in the anti-cancer activities of lotus seedpod against the six cancers.Conclusions:14 core compounds and 10 core targets were screened for lotus seedpod against lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.This study supports the application of lotus seedpod in treating cancers,and promotes the recycling and the high-value utilization. 展开更多
关键词 Lotus seedpod ANTI-CANCER Bioactive compounds molecular targets Network pharmacology molecular docking.
下载PDF
Research Progress of Molecular Clock 被引量:2
20
作者 龙承星 张波 马绍宾 《Agricultural Science & Technology》 CAS 2012年第12期2496-2498,2553,共4页
In the paper, related research and progress of molecular clock hypothesis were summarized, including definition of molecular clock, supporting proofs, contro- versy, significance and perfection, application and accomp... In the paper, related research and progress of molecular clock hypothesis were summarized, including definition of molecular clock, supporting proofs, contro- versy, significance and perfection, application and accompanying challenges. 展开更多
关键词 molecular clock molecular clock hypothesis Slowing-down of evolution Rate of molecular evolution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部