This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power s...In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.展开更多
Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. Th...Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. The minimum negative log-likelihood function was used as the objective function to optimize instead of using iterative method to solve complex system of equations,and the problem of parameter estimation of improved NHPP model was solved by immune clone algorithm. And the interval estimation of reliability indices was given by using fisher information matrix method and delta method. An example of failure truncated data from multiple numerical control( NC) machine tools was taken to prove the method. and the results show that the algorithm has a higher convergence rate and computational accuracy, which demonstrates the feasibility of the method.展开更多
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金This work is supported by Shanghai Science and Technology Planning Project(Project No.20040501200).
文摘In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.
基金National CNC Special Project,China(No.2010ZX04001-032)the Youth Science and Technology Foundation of Gansu Province,China(No.145RJYA307)
文摘Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. The minimum negative log-likelihood function was used as the objective function to optimize instead of using iterative method to solve complex system of equations,and the problem of parameter estimation of improved NHPP model was solved by immune clone algorithm. And the interval estimation of reliability indices was given by using fisher information matrix method and delta method. An example of failure truncated data from multiple numerical control( NC) machine tools was taken to prove the method. and the results show that the algorithm has a higher convergence rate and computational accuracy, which demonstrates the feasibility of the method.