An on-line electric vehicle(OLEV)uses a wireless charging phenomenon,in which power transmitters are installed beneath the road and the OLEV’s battery is charged remotely.This paper deals with the optimization of two...An on-line electric vehicle(OLEV)uses a wireless charging phenomenon,in which power transmitters are installed beneath the road and the OLEV’s battery is charged remotely.This paper deals with the optimization of two key economic and design parameters,i.e.,the size of the battery and the power transmitters allocation.A complete model configuration of the OLEV system,including the vehicle design and power transmitter,is implemented using MATLAB/Simulink.The battery’s state of charge(SOC)rises and drops according to the vehicle’s velocity and power collection and consumption.The mixed integer programming(MIP)model is used for cost calculation.Therefore,with the help of the SOC graph and MIP model,the battery size and the number of power transmitters,along with their placements,are optimized.The proposed model is applicable to both closed and open environments as it accepts both regulated and deregulated velocities.Two test cases are performed for this purpose.The first test case deals with regulated velocity for which we have applied the KAIST campus OLEV’s velocity along with its 13 kWh battery size and 4 power transmitters,and then applied the suggested solution with the same velocity and route i.e.,8 power transmitters with shorter lengths and reduced battery size(3.25 kWh;one-fourth of the first case).SOC is found within limits at the end of the route,saving$1600 and validating the proposed model in this paper.For the second test case,we use deregulated velocity and optimize both parameters,using the same approach.展开更多
文摘An on-line electric vehicle(OLEV)uses a wireless charging phenomenon,in which power transmitters are installed beneath the road and the OLEV’s battery is charged remotely.This paper deals with the optimization of two key economic and design parameters,i.e.,the size of the battery and the power transmitters allocation.A complete model configuration of the OLEV system,including the vehicle design and power transmitter,is implemented using MATLAB/Simulink.The battery’s state of charge(SOC)rises and drops according to the vehicle’s velocity and power collection and consumption.The mixed integer programming(MIP)model is used for cost calculation.Therefore,with the help of the SOC graph and MIP model,the battery size and the number of power transmitters,along with their placements,are optimized.The proposed model is applicable to both closed and open environments as it accepts both regulated and deregulated velocities.Two test cases are performed for this purpose.The first test case deals with regulated velocity for which we have applied the KAIST campus OLEV’s velocity along with its 13 kWh battery size and 4 power transmitters,and then applied the suggested solution with the same velocity and route i.e.,8 power transmitters with shorter lengths and reduced battery size(3.25 kWh;one-fourth of the first case).SOC is found within limits at the end of the route,saving$1600 and validating the proposed model in this paper.For the second test case,we use deregulated velocity and optimize both parameters,using the same approach.