The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are...The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are also reviewed. It is suggested that the habitu-ally-practised rotation angle system for aerophotogrammetry in China should be used for the future teaching and resaarching work in the close range photogrammetry, and that the rotation angle system for terrestrial deformation photogrammetry should be left out in order to avoid the confuse and reduce the amount of expanse for making softwares. It has been emphasized that there are three improtant aspects in the close range control work with high accurary using the conventional method of engineering surveying: the use of standard scale for measurement of distance between two general stations, the accurate determination of start direction line between two general stations and the handling method of influence of 2C change. A method for setting up industrial surveying control net with extra-high accuracy ±(0.05–0.20) mm is presented by the author. This kind of industrial control net is necessary for batch process of large industrial components with purposes of measurement, inspect and lofting. There are some special methods of control work in the close range photogrammetry, including two methods presented by the author.展开更多
Accurate three-dimensional (3D) target positioning is of great importance in many industrial applications. Although various methods for reconstructing 3D information from a set of images have been available in the l...Accurate three-dimensional (3D) target positioning is of great importance in many industrial applications. Although various methods for reconstructing 3D information from a set of images have been available in the literature, few of them pay enough attention to the indispensable procedures, such as target extraction from images and image correction having strong influences upon the 3D positioning accuracy. This article puts forward a high-precision ellipse center (target point) extraction method and a new image correction approach which has been integrated into the 3D reconstruction pipeline with a concise implicit model to accurately compensates for the image distortion. The methods are applied to a copyright-reserved close range photogrammetric system. Real measuring experiments and industrial applications have evidenced the proposed methods, which can significantly improve the 3D positioning accuracy.展开更多
In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) ...In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.展开更多
We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on ...We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).展开更多
A plane-based and linear camera calibration technique without considering lens distortion is proposed in a greedy and intuitive framework for the binocular camera system. Characteristic homography matrix and consisten...A plane-based and linear camera calibration technique without considering lens distortion is proposed in a greedy and intuitive framework for the binocular camera system. Characteristic homography matrix and consistency constraints in close range are employed in this calibration. First, in order to calculate the internal geometries of the cameras, total least-square fitting as a robust tool for the geometrical cost function is exploited to recover the accurate principal point of each camera from all the characteristic lines of the homography matrices for all model planes. Secondly, generic prior knowledge of the aspect ratio of pixel cells is incorporated into the system to obtain the exact principal length in each camera. Thirdly, extrinsic geometries are accurately computed for all planar patterns with respect to each monocular camera. Finally, the rigid displacement between binocular cameras can be obtained by imposing the consistency constraints in 3-space geometry. Both simulation and real image experimental results indicate that reasonably reliable results can be obtained by this technique. And the proposed method is sufficient for applications where high precision is not required and can be easily performed by common computer users who are not experts in computer vision.展开更多
Both tillage erosion and water erosion are severe erosional forms that occur widely on sloping agricultural land.However,previous studies have rarely considered the process of landform change due to continuous simulat...Both tillage erosion and water erosion are severe erosional forms that occur widely on sloping agricultural land.However,previous studies have rarely considered the process of landform change due to continuous simulation experiments of alternating tillage erosion and water erosion.To identify such changes,we applied a scouring experiment(at a 60 L min-1 water discharge rate based on precipitation data from the local meteorological station and the catchment area in the Yuanmou County,Yunnan Province,China)and a series of simulated tillage experiments where plots were consecutively tilled 5,10,and 15 times in rotation(representing 5 yr,10 yr,and 15 yr of tillage)at slope gradients of 5°,10°,and 20°.Close-range photogrammetry(CRP)employing an unmanned aerial vehicle(UAV)and a real-time kinematic global positioning system(RTK-GPS)was used to measure landform changes,and highresolution digital elevation models(DEMs)were generated to calculate net soil loss volumes.Additionally,the CRP was determined to be accurate and applicable through the use of erosion pins.The average tillage erosion rates were 69.85,131.45,and 155.34 t·hm-2·tillage pass-1,and the average water erosion rates were 1892.52,2961.76,and 4405.93 t·hm-2·h-1 for the 5°,10°,and 20°sloping farmland plots,respectively.The water erosion rates increased as tillage intensity increased,indicating that tillage erosion accelerates water erosion.Following these intensive tillage treatments,slope gradients gradually decreased,while the trend in slope gradients increased in runoff plots at the conclusion of the scouring experiment.Compared to the original plots(prior to our experiments),interactions between tillage and water erosion caused no obvious change in the landform structure of the runoff plots,while the height of all the runoff plots decreased.Our findings showed that both tillage erosion and water erosion caused a pseudo-steady-state landform evolutionary mechanism and resulted in thin soil layers on cultivated land composed of purple soil in China.展开更多
Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exp...Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.展开更多
It is usually a time-consuming process to real-time set up 3D digital surface model(DSM) of an object with complex surface.On the basis of the architectural survey project of"Chilin Nunnery Reconstruction",t...It is usually a time-consuming process to real-time set up 3D digital surface model(DSM) of an object with complex surface.On the basis of the architectural survey project of"Chilin Nunnery Reconstruction",this paper investigates an easy and feasible way,that is,on project site,applying digital close range photogrammetry and CAD technique to establish the DSM for simulating ancient architectures with complex surface.The method has been proved very effective in practice.展开更多
Shoemaking is one of the areas where CAD/CAM application is rapidly increasing.This paper introduces an integrated computer aided shoemaking system including human foot measuring,last (wooden model)measuring,last CAD/...Shoemaking is one of the areas where CAD/CAM application is rapidly increasing.This paper introduces an integrated computer aided shoemaking system including human foot measuring,last (wooden model)measuring,last CAD/CAM and pattern CAD/CAM.The project was supported by the 7th national economical 5 year plan.High technologies,suh as digital image processing,pattern rcognition,advanced geometrical modeling and a series of sophisticated equipments and devices are ap- plied in this integrated system.Parts of the system have become commercial products.展开更多
Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weight...Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weighted Bergman-Orlicz spaceA^ψω(D,dAa)is||f||ω^ψ=∫Dψ|F(z)|ω(z)dA^(z) 〈 ∞,where q; is a strictly convex Orlicz function that satisfies other technical hypotheses. Let G be a measurable subset of D, we say G satisfies the reverse Carleson condition for A^ψω (D, dAa) if there exists a positive constant C such that ∫Gψ(f(z))ω(z)dAa(z)≥C∫Dψ(|f(z)dAa(z).for all f ∈ .A^ψω (D,dAa). Let μ be a positive Borel measure, we say μ satisfies the direct Carleson condition if there exists a positive constant M such that for all f∈Aψ^ω (D,dAa),∫Dψ(|f(z)|)dμ(z)≤M∫Dψ(|f(z)|)ω(z)dAa(a).In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space Aω^ψ(D,dAa).We present conditions on the set G such that'the reverse Carleson condition'holds. "Moreover, we give a sufficient condition for the finite positive Borel measure μ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.展开更多
文摘The purpose, classification, required accuracy and surveying methods of control work for close range photogrammetry have been briefly stated. The different methods for definition of space, object coordinate system are also reviewed. It is suggested that the habitu-ally-practised rotation angle system for aerophotogrammetry in China should be used for the future teaching and resaarching work in the close range photogrammetry, and that the rotation angle system for terrestrial deformation photogrammetry should be left out in order to avoid the confuse and reduce the amount of expanse for making softwares. It has been emphasized that there are three improtant aspects in the close range control work with high accurary using the conventional method of engineering surveying: the use of standard scale for measurement of distance between two general stations, the accurate determination of start direction line between two general stations and the handling method of influence of 2C change. A method for setting up industrial surveying control net with extra-high accuracy ±(0.05–0.20) mm is presented by the author. This kind of industrial control net is necessary for batch process of large industrial components with purposes of measurement, inspect and lofting. There are some special methods of control work in the close range photogrammetry, including two methods presented by the author.
基金National Natural Science Foundation of China (50875 130) Doctoral Discipline Foundation of China (200802870016) Science Foundation of Jiangsu, China (BE2008136)
文摘Accurate three-dimensional (3D) target positioning is of great importance in many industrial applications. Although various methods for reconstructing 3D information from a set of images have been available in the literature, few of them pay enough attention to the indispensable procedures, such as target extraction from images and image correction having strong influences upon the 3D positioning accuracy. This article puts forward a high-precision ellipse center (target point) extraction method and a new image correction approach which has been integrated into the 3D reconstruction pipeline with a concise implicit model to accurately compensates for the image distortion. The methods are applied to a copyright-reserved close range photogrammetric system. Real measuring experiments and industrial applications have evidenced the proposed methods, which can significantly improve the 3D positioning accuracy.
文摘In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.
基金partially supported by the Fundamental Research Funds for the Central Universities(GK202207018)of China。
文摘We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).
文摘A plane-based and linear camera calibration technique without considering lens distortion is proposed in a greedy and intuitive framework for the binocular camera system. Characteristic homography matrix and consistency constraints in close range are employed in this calibration. First, in order to calculate the internal geometries of the cameras, total least-square fitting as a robust tool for the geometrical cost function is exploited to recover the accurate principal point of each camera from all the characteristic lines of the homography matrices for all model planes. Secondly, generic prior knowledge of the aspect ratio of pixel cells is incorporated into the system to obtain the exact principal length in each camera. Thirdly, extrinsic geometries are accurately computed for all planar patterns with respect to each monocular camera. Finally, the rigid displacement between binocular cameras can be obtained by imposing the consistency constraints in 3-space geometry. Both simulation and real image experimental results indicate that reasonably reliable results can be obtained by this technique. And the proposed method is sufficient for applications where high precision is not required and can be easily performed by common computer users who are not experts in computer vision.
基金supported by the National Key Research and Development Program of China(2017YFC0505102)the National Natural Science Foundation of China(No.41401313)+2 种基金the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07101001)the Applied Basic Research Program of Sichuan(2018JY0034)the Major Science and Technology Projects in Sichuan Province(2018SZDZX0034)。
文摘Both tillage erosion and water erosion are severe erosional forms that occur widely on sloping agricultural land.However,previous studies have rarely considered the process of landform change due to continuous simulation experiments of alternating tillage erosion and water erosion.To identify such changes,we applied a scouring experiment(at a 60 L min-1 water discharge rate based on precipitation data from the local meteorological station and the catchment area in the Yuanmou County,Yunnan Province,China)and a series of simulated tillage experiments where plots were consecutively tilled 5,10,and 15 times in rotation(representing 5 yr,10 yr,and 15 yr of tillage)at slope gradients of 5°,10°,and 20°.Close-range photogrammetry(CRP)employing an unmanned aerial vehicle(UAV)and a real-time kinematic global positioning system(RTK-GPS)was used to measure landform changes,and highresolution digital elevation models(DEMs)were generated to calculate net soil loss volumes.Additionally,the CRP was determined to be accurate and applicable through the use of erosion pins.The average tillage erosion rates were 69.85,131.45,and 155.34 t·hm-2·tillage pass-1,and the average water erosion rates were 1892.52,2961.76,and 4405.93 t·hm-2·h-1 for the 5°,10°,and 20°sloping farmland plots,respectively.The water erosion rates increased as tillage intensity increased,indicating that tillage erosion accelerates water erosion.Following these intensive tillage treatments,slope gradients gradually decreased,while the trend in slope gradients increased in runoff plots at the conclusion of the scouring experiment.Compared to the original plots(prior to our experiments),interactions between tillage and water erosion caused no obvious change in the landform structure of the runoff plots,while the height of all the runoff plots decreased.Our findings showed that both tillage erosion and water erosion caused a pseudo-steady-state landform evolutionary mechanism and resulted in thin soil layers on cultivated land composed of purple soil in China.
基金supported in part by the Strategic Research Council at the Academy of Finland project“Competence Based Growth Through Integrated Disruptive Technologies of 3D Digitalization,Robotics,Geospatial Information and Image Processing/Computing-Point Cloud Ecosystem(293389,314312),Academy of Finland projects“Estimating Forest Resources and Quality-related Attributes Using Automated Methods and Technologies”(334830,334829)”,“Monitoring and understanding forest ecosystem cycles”(334060)。
文摘Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.
文摘It is usually a time-consuming process to real-time set up 3D digital surface model(DSM) of an object with complex surface.On the basis of the architectural survey project of"Chilin Nunnery Reconstruction",this paper investigates an easy and feasible way,that is,on project site,applying digital close range photogrammetry and CAD technique to establish the DSM for simulating ancient architectures with complex surface.The method has been proved very effective in practice.
文摘Shoemaking is one of the areas where CAD/CAM application is rapidly increasing.This paper introduces an integrated computer aided shoemaking system including human foot measuring,last (wooden model)measuring,last CAD/CAM and pattern CAD/CAM.The project was supported by the 7th national economical 5 year plan.High technologies,suh as digital image processing,pattern rcognition,advanced geometrical modeling and a series of sophisticated equipments and devices are ap- plied in this integrated system.Parts of the system have become commercial products.
文摘Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weighted Bergman-Orlicz spaceA^ψω(D,dAa)is||f||ω^ψ=∫Dψ|F(z)|ω(z)dA^(z) 〈 ∞,where q; is a strictly convex Orlicz function that satisfies other technical hypotheses. Let G be a measurable subset of D, we say G satisfies the reverse Carleson condition for A^ψω (D, dAa) if there exists a positive constant C such that ∫Gψ(f(z))ω(z)dAa(z)≥C∫Dψ(|f(z)dAa(z).for all f ∈ .A^ψω (D,dAa). Let μ be a positive Borel measure, we say μ satisfies the direct Carleson condition if there exists a positive constant M such that for all f∈Aψ^ω (D,dAa),∫Dψ(|f(z)|)dμ(z)≤M∫Dψ(|f(z)|)ω(z)dAa(a).In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space Aω^ψ(D,dAa).We present conditions on the set G such that'the reverse Carleson condition'holds. "Moreover, we give a sufficient condition for the finite positive Borel measure μ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.