This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical ...This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical model for the second"activation"of broken overlying strata is established,and the related mechanical"activation"conditions are obtained.A recursive formula for calculating the separation distance of overlying strata is deduced.Second,a height determining method for predicting the height of fractured zones during close-distance coal seam group mining is proposed based on two values,namely,the separation distance and ultimate subsidence value of overlying strata.This method is applied to calculate the fractured zone heights in nos.20107 and 20307 mining faces.The calculated results are almost equal to the field observation results.Third,a modified formula for calculating the height of a waterflowing fractured zone is proposed.A comparison of the calculated and observed results shows that the errors are small.The height determining method and modified formula not only build a theoretical foundation for water conservation mining at the Gaojialiang coal mine,but also provide a reference for estimating the height of water-flowing fractured zones in other coal mines with similar conditions.展开更多
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st...In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.展开更多
According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the a...According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.展开更多
The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development....The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development.Taking the Dahebian block in western Guizhou as the study area,the geological model of coalbed methane reservoirs in the tectonically deformed coal seam group was established,and the spatial distribution pattern of model parameters was clarified by clustering algorithms and factor analysis.The facies model suggests that the main coal body structures in Nos.1,4,and 7 coal seams are cataclastic coal and granulated coal,whereas the No.11 coal seam is dominated by granulated coal,which has larger thicknesses and spreads more continuously.The in situ permeability of primary undeformed coal,cataclastic coal,granulated coal,and mylonitized coal reservoirs are 0.333 mD,0.931 mD,0.146 mD,and 0.099 mD,respectively,according to the production performance analysis method.The property model constructed by facies-controlled modeling reveals that Nos.1,4,and 7 coal seams have a wider high-permeability area,but the gas content is lower;the high-permeability area in the No.11 coal seam is more limited,but the gas content is higher.The results of the self-organizing map neural network and K-means clustering indicate that the geological model can be divided into 6 clusters,the model parameter characteristics of the 6 clusters are summarized by data analysis in combination with 6 factors extracted by factor analysis,and the application of data analysis results in multi-layer coalbed methane co-development is presented.This study provides ideas for the geological modeling in the tectonically deformed coal seam group and its data analysis.展开更多
Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineerin...Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineering background of close-distance seam mining in a coal mine,the reasonable position of the underlying coal seam's stopping line and the support method of the large section roadway during stopping are investigated using feld measurements,similar simulation experiments,and numerical simulations.There are three types of location relationships between the stopping line of the underlying coal seam and the stopping line of the overlying coal seam:"externally staggered with the upper stopping line"(ESUL,stops mining under the overlying goaf),"overlapped with upper stopping line"(OUL),and"internally staggered with the upper stopping line"(ISUL,ISUL-SD for shorter internal staggered distances,ISUL-LD for longer ones).There are diferent stress arch structures in the overlying strata of the above three positions,and the stress arch evolution process exists in the process of ESUL→OUL→ISUL-SD→ISUL-LD:a front and rear double stress arch structure→the front arch gradually decreases→the front arch dies out,and the double arch synthesizes the single arch→the single-arch range expands→the nested double arch.The relationship between the stress arch structure and the position of the stopping line is evaluated as follows:(1)ESUL:the stress concentration in the roof plate of the retracement channel of the underlying coal seam is the highest,because the overburden block of the extensive collapse zone acts directly on the roof plate of the retracement channel,resulting in relative difculties in roof support.(2)OUL:although the retracement channel roof pressure is minimal,the overlying rock structure has the potential for rotation or slippage instability.(3)ISUL-SD:the pressure on the roof of the retracement channel is small and the overburden structure is stable,which is conducive to the safe retraction of the support and not limited by the width of the end-mining coal pillar.(4)ISUL-LD:it is basically the same as the condition of stopping under the non-goaf;however,it has a limitation on the width of the end-mining coal pillar.The location of the stopping line is selected as ISUL-SD,and the retraction process of the self-excavating retraction channel was adopted.A partition asymmetric support scheme which is proven by feld practice is proposed,through a comprehensive analysis of the pre-stress feld simulation of the support scheme,based on the diferent control requirements of the roof above the support and the roof of the retracement channel in the stopping area.This method realizes safe and smooth withdrawal of the support.展开更多
A pressure relief gas extraction technical model of a typical mining area is proposed based on coal and gas simultaneous extraction theory. Flac3 Dwas employed to model vertical stress and displacement contour plot ch...A pressure relief gas extraction technical model of a typical mining area is proposed based on coal and gas simultaneous extraction theory. Flac3 Dwas employed to model vertical stress and displacement contour plot characteristics of non-outburst coal seam(No. 4) on top of outburst coal seam(No. 2) along strike and incline directions. Field investigations were also conducted to verify the scientific nature of the simulation. The results demonstrate that gas pressure in No. 2 coal seam dropped to approximately 0.55 MPa in the pressure relief multi-coal seam. The highest expansion rate of the coal mine reached up to 2.58%.The pressure-relief angle was 76° along the incline direction and 60° along the strike direction. As the expansion rate and pressure-relief angle increased and the gas pressure decreased, a large amount of gas flowed into the gob of No. 4 from No. 2 coal seam and was later discharged through specific gas pipes,which eliminated No. 2 outburst risks. This study resulted in positive outcomes in that gas extraction time was reduced by 13.5 days, due to pressure relief, and drilling work load was reduced by 0.1161 m/t coal. This method ensures that gas is discharged from the outburst coal seam quickly and safely,demonstrating that the proposed technical model of pressure-relief gas extraction is effective in a multi-coal seam region.展开更多
针对中近距离松软低透气性突出煤层群抽采防突难题,以皖北矿区任楼煤矿突出煤层群瓦斯地质条件为工程背景,在对松软煤层水力割缝卸压增透机制、首采层割缝工艺参数等研究的基础上,提出了首采层煤巷条带水力割缝卸压增透、煤层群瓦斯联...针对中近距离松软低透气性突出煤层群抽采防突难题,以皖北矿区任楼煤矿突出煤层群瓦斯地质条件为工程背景,在对松软煤层水力割缝卸压增透机制、首采层割缝工艺参数等研究的基础上,提出了首采层煤巷条带水力割缝卸压增透、煤层群瓦斯联合抽采的综合治理技术,优化了钻孔布置方式,并进行了工程应用。结果表明:割缝实施后钻孔的瓦斯抽采浓度、单孔日均抽采纯量分别是常规钻孔的4.27倍、3.94倍,煤层透气性提高了22~31倍,首采层72号煤层割缝后的防突有效半径可提高至5 m以上,检验抽采半径5 m处的瓦斯含量指标为4.13 m 3/t,在有效解决首采层煤巷条带瓦斯灾害的同时,钻孔工程量降低了2/3以上。展开更多
基金supported by the National Natural Science Foundation of China(Nos.51474137,and 51574154)Shandong Province Natural Science Fund(No.ZR201709180101)+1 种基金Tai’shan Scholar Engineering Construction Fund of Shandong Province of ChinaPostgraduate Technology Innovation Project of Shandong University of Science and Technology(No.SDKDYC 180103).
文摘This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical model for the second"activation"of broken overlying strata is established,and the related mechanical"activation"conditions are obtained.A recursive formula for calculating the separation distance of overlying strata is deduced.Second,a height determining method for predicting the height of fractured zones during close-distance coal seam group mining is proposed based on two values,namely,the separation distance and ultimate subsidence value of overlying strata.This method is applied to calculate the fractured zone heights in nos.20107 and 20307 mining faces.The calculated results are almost equal to the field observation results.Third,a modified formula for calculating the height of a waterflowing fractured zone is proposed.A comparison of the calculated and observed results shows that the errors are small.The height determining method and modified formula not only build a theoretical foundation for water conservation mining at the Gaojialiang coal mine,but also provide a reference for estimating the height of water-flowing fractured zones in other coal mines with similar conditions.
基金Project(51104176)supported by the National Natural Science Foundation of China
文摘In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.
文摘According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.
基金supported by the National Natural Science Foundation of China(Grant No.41727801)the Geological Exploration Foundation of Guizhou Province(No.208-9912-JBN-UTSO)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development.Taking the Dahebian block in western Guizhou as the study area,the geological model of coalbed methane reservoirs in the tectonically deformed coal seam group was established,and the spatial distribution pattern of model parameters was clarified by clustering algorithms and factor analysis.The facies model suggests that the main coal body structures in Nos.1,4,and 7 coal seams are cataclastic coal and granulated coal,whereas the No.11 coal seam is dominated by granulated coal,which has larger thicknesses and spreads more continuously.The in situ permeability of primary undeformed coal,cataclastic coal,granulated coal,and mylonitized coal reservoirs are 0.333 mD,0.931 mD,0.146 mD,and 0.099 mD,respectively,according to the production performance analysis method.The property model constructed by facies-controlled modeling reveals that Nos.1,4,and 7 coal seams have a wider high-permeability area,but the gas content is lower;the high-permeability area in the No.11 coal seam is more limited,but the gas content is higher.The results of the self-organizing map neural network and K-means clustering indicate that the geological model can be divided into 6 clusters,the model parameter characteristics of the 6 clusters are summarized by data analysis in combination with 6 factors extracted by factor analysis,and the application of data analysis results in multi-layer coalbed methane co-development is presented.This study provides ideas for the geological modeling in the tectonically deformed coal seam group and its data analysis.
基金supported by the National Natural Science Foundation of China(52004286)the Fundamental Research Funds for the Central Universities(2022XJNY02)+3 种基金the National Natural Science Foundation of China(51974317,52074296)the China Postdoctoral Science Foundation(2020T130701,2019M650895)the Fundamental Research Funds for the Central Universities(2022YJSNY18,2022YJSNY09)all of which were gratefully acknowledged.
文摘Close-distance coal seams are widely distributed over China,and the coal pillars left by the overlying coal seams afect the retracement channel of the underlying coal seam in the stopping stage.Based on the engineering background of close-distance seam mining in a coal mine,the reasonable position of the underlying coal seam's stopping line and the support method of the large section roadway during stopping are investigated using feld measurements,similar simulation experiments,and numerical simulations.There are three types of location relationships between the stopping line of the underlying coal seam and the stopping line of the overlying coal seam:"externally staggered with the upper stopping line"(ESUL,stops mining under the overlying goaf),"overlapped with upper stopping line"(OUL),and"internally staggered with the upper stopping line"(ISUL,ISUL-SD for shorter internal staggered distances,ISUL-LD for longer ones).There are diferent stress arch structures in the overlying strata of the above three positions,and the stress arch evolution process exists in the process of ESUL→OUL→ISUL-SD→ISUL-LD:a front and rear double stress arch structure→the front arch gradually decreases→the front arch dies out,and the double arch synthesizes the single arch→the single-arch range expands→the nested double arch.The relationship between the stress arch structure and the position of the stopping line is evaluated as follows:(1)ESUL:the stress concentration in the roof plate of the retracement channel of the underlying coal seam is the highest,because the overburden block of the extensive collapse zone acts directly on the roof plate of the retracement channel,resulting in relative difculties in roof support.(2)OUL:although the retracement channel roof pressure is minimal,the overlying rock structure has the potential for rotation or slippage instability.(3)ISUL-SD:the pressure on the roof of the retracement channel is small and the overburden structure is stable,which is conducive to the safe retraction of the support and not limited by the width of the end-mining coal pillar.(4)ISUL-LD:it is basically the same as the condition of stopping under the non-goaf;however,it has a limitation on the width of the end-mining coal pillar.The location of the stopping line is selected as ISUL-SD,and the retraction process of the self-excavating retraction channel was adopted.A partition asymmetric support scheme which is proven by feld practice is proposed,through a comprehensive analysis of the pre-stress feld simulation of the support scheme,based on the diferent control requirements of the roof above the support and the roof of the retracement channel in the stopping area.This method realizes safe and smooth withdrawal of the support.
基金support from the National Key Basic Research and Development Program (No. 2011CB201206)the Junior Fellowships for Advanced Innovation Think-Tank Program from China Association for Science and Technology (No. DXB-ZKQN-2016-048)
文摘A pressure relief gas extraction technical model of a typical mining area is proposed based on coal and gas simultaneous extraction theory. Flac3 Dwas employed to model vertical stress and displacement contour plot characteristics of non-outburst coal seam(No. 4) on top of outburst coal seam(No. 2) along strike and incline directions. Field investigations were also conducted to verify the scientific nature of the simulation. The results demonstrate that gas pressure in No. 2 coal seam dropped to approximately 0.55 MPa in the pressure relief multi-coal seam. The highest expansion rate of the coal mine reached up to 2.58%.The pressure-relief angle was 76° along the incline direction and 60° along the strike direction. As the expansion rate and pressure-relief angle increased and the gas pressure decreased, a large amount of gas flowed into the gob of No. 4 from No. 2 coal seam and was later discharged through specific gas pipes,which eliminated No. 2 outburst risks. This study resulted in positive outcomes in that gas extraction time was reduced by 13.5 days, due to pressure relief, and drilling work load was reduced by 0.1161 m/t coal. This method ensures that gas is discharged from the outburst coal seam quickly and safely,demonstrating that the proposed technical model of pressure-relief gas extraction is effective in a multi-coal seam region.
文摘针对中近距离松软低透气性突出煤层群抽采防突难题,以皖北矿区任楼煤矿突出煤层群瓦斯地质条件为工程背景,在对松软煤层水力割缝卸压增透机制、首采层割缝工艺参数等研究的基础上,提出了首采层煤巷条带水力割缝卸压增透、煤层群瓦斯联合抽采的综合治理技术,优化了钻孔布置方式,并进行了工程应用。结果表明:割缝实施后钻孔的瓦斯抽采浓度、单孔日均抽采纯量分别是常规钻孔的4.27倍、3.94倍,煤层透气性提高了22~31倍,首采层72号煤层割缝后的防突有效半径可提高至5 m以上,检验抽采半径5 m处的瓦斯含量指标为4.13 m 3/t,在有效解决首采层煤巷条带瓦斯灾害的同时,钻孔工程量降低了2/3以上。