The corrosion inhibition performance of co-immobilized lysozyme and lipase was investigated in a recirculating cooling water system. Four methods were carried out in co-immobilization, and the operating parameters wer...The corrosion inhibition performance of co-immobilized lysozyme and lipase was investigated in a recirculating cooling water system. Four methods were carried out in co-immobilization, and the operating parameters were optimized by using the respond surface methodology(RSM). The corrosion inhibition performance of co-immobilized lipase and lysozyme was evaluated by weight loss measurements and electrochemical measurements. The results revealed that the optimal co-immobilization method should be the sequential immobilization of lysozyme and then lipase. The inhibition efficiency was 86.10% under the optimal co-immobilized conditions. Electrochemical data showed that co-immobilized lysozyme and lipase was a mixed-type inhibitor and the corrosion inhibition efficiency was 81%.展开更多
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
MIC is one of the main problems of circulating cooling water system. The direct economic loss by MIC is about 300 to 500 billion dollars. It is good to understand MIC in order to control MIC. Source and species of mic...MIC is one of the main problems of circulating cooling water system. The direct economic loss by MIC is about 300 to 500 billion dollars. It is good to understand MIC in order to control MIC. Source and species of microorganisms was introduced firstly. There are three kinds of microorganisms in the system, including bacteria, fungi and algae. Species of these microorganisms are shown in the paper. Then, mechanisms of MIC are analysed. Although there is no universal mechanism of MIC, MIC is still mainly an electrochemical corrosion in nature. Meanwhile, the mechanisms on SRB and iron bacteria are introduced in details. At last, several methods of microorganisms control are put forward in the paper.展开更多
Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the...Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.展开更多
Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter...Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.展开更多
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t...It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.展开更多
In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environm...In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environmental conditions and inefficient air conditioning.In this study,interlayer cool airflow(ILCA)was used to introduce room air into plants’internal canopy through vent holes in cultivation boards and air layer between cultivation boards and nutrient solution surface(interlayer).By using optimal operating parameters at a room temperature of 28℃,the ILCA system achieved similar cooling effects in the absence of a conventional air conditioning system and achieved an energy saving of 50.8% while bringing about positive microclimate change in the interlayer and nutrient solution.This resulted in significantly reduced root growth by 41.7% without a negative influence on lettuce crop yield.Future development in this precise microclimate control method is predicted to replace the conventional cooling(air conditioning)systems for crop production in plant factories.展开更多
In order to solve the problems including pipe corrosion, scaling and microbial growth, which severely threat safe op-eration of circulating cooling water system, this paper proposes ion exchange softening and alkaliza...In order to solve the problems including pipe corrosion, scaling and microbial growth, which severely threat safe op-eration of circulating cooling water system, this paper proposes ion exchange softening and alkalization process to solve these problems and carries out a series of studies to study the feasibility of ion exchange softening and alkaliza-tion process in the simulation process of circulating cooling water system. The studies include product water quality of ion exchange softening and alkalization process, effect on the performance of carbon steel and brass, and the inhibition that suppresses microbial growth. The results indicate that ion exchange softening and alkalization process is feasible to prevent the circulating cooling water system from scaling, pipe corrosion, and microbial growth without any other chemicals. Thus circulating cooling water system can achieve zerodischarge of wastewater.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% ...Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.展开更多
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial asp...High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.展开更多
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat...The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.展开更多
Cooling water systems(CWSs)are extensively utilized in various industries to eliminate the excess heat and converse energy.Studies on CWSs mainly concentrated on finding the optimal cooler network structure.In additio...Cooling water systems(CWSs)are extensively utilized in various industries to eliminate the excess heat and converse energy.Studies on CWSs mainly concentrated on finding the optimal cooler network structure.In addition,some works also considered the optimal design under varied operation conditions.However,in these works,once the optimal design of the cooler's network is determined,its arrangement remains fixed and cannot be adapted to accommodate diverse operating conditions.In this work,a flexible topology network concept is proposed to make the adjustment of network structure possible under different operation conditions.The CWS with integrated air cooler and flexible topology network has better overall performance,represented by a mixed integer nonlinear programming(MINLP)model that require advanced tools such as GAMS software.Case studies revealed that the proposed methodology can realize better energy-saving performance,and improve the economic performance under varied operation conditions.The impact of critical flexible nodes on system configuration and economy is achieved by sensitivity analysis.展开更多
In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network betwee...In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, the supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperatures in the network, have a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.展开更多
Closed wet cooling towers(CWCTs) are used widely because of their better water quality and smaller water consumption. However, the operating parameters shown in the technical documents are only for rated conditions in...Closed wet cooling towers(CWCTs) are used widely because of their better water quality and smaller water consumption. However, the operating parameters shown in the technical documents are only for rated conditions in summer, not for any other conditions, especially in low air wet-bulb temperature areas such as those near 0℃. In addition, CWCTs often fail to achieve the designed cooling effect at low air wet-bulb temperatures. A experiment set of CWCT was built, and the performance of the CWCT at low air wet-bulb temperature near 0℃ was investigated. The impact of the operating parameters(air flow rate, cooling water flow rate, and spray water flow rate) on the heat and mass transfer performance of the CWCT was measured and analyzed. The results show the cooling performance of the CWCT at an air wet-bulb temperature 0℃, 2℃, and 4℃ is about 47%–63% of the rated operating condition;the optimal operating parameters of these conditions for the CWCT are just the same as those of the rated operating condition in summer. According to the experimental results, some operating advices are given.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of car...Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of carrying capacity of regional water resources", finally the thinking on adopting air-cooling technology to develop nuclear power in Henan Province was expounded.展开更多
基金financially supported by the National Natural Science Foundation of China (project 21077133)the Natural Foundation of Shandong Province and the Top Talent Project of China University of Petroleum (16RC17040003)
文摘The corrosion inhibition performance of co-immobilized lysozyme and lipase was investigated in a recirculating cooling water system. Four methods were carried out in co-immobilization, and the operating parameters were optimized by using the respond surface methodology(RSM). The corrosion inhibition performance of co-immobilized lipase and lysozyme was evaluated by weight loss measurements and electrochemical measurements. The results revealed that the optimal co-immobilization method should be the sequential immobilization of lysozyme and then lipase. The inhibition efficiency was 86.10% under the optimal co-immobilized conditions. Electrochemical data showed that co-immobilized lysozyme and lipase was a mixed-type inhibitor and the corrosion inhibition efficiency was 81%.
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
文摘MIC is one of the main problems of circulating cooling water system. The direct economic loss by MIC is about 300 to 500 billion dollars. It is good to understand MIC in order to control MIC. Source and species of microorganisms was introduced firstly. There are three kinds of microorganisms in the system, including bacteria, fungi and algae. Species of these microorganisms are shown in the paper. Then, mechanisms of MIC are analysed. Although there is no universal mechanism of MIC, MIC is still mainly an electrochemical corrosion in nature. Meanwhile, the mechanisms on SRB and iron bacteria are introduced in details. At last, several methods of microorganisms control are put forward in the paper.
文摘Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.
基金supported by the Foundation for Top Talents Program of China University of Petroleum
文摘Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.
文摘It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.
基金This work was supported by the National Natural Science Foundation of China(31701969)the Key Projects of Ningxia Key R&D Program Fund,China(2018BBF02012)the Science and Technology Program of Shaanxi Province,China(2017ZDXM-NY-057).
文摘In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environmental conditions and inefficient air conditioning.In this study,interlayer cool airflow(ILCA)was used to introduce room air into plants’internal canopy through vent holes in cultivation boards and air layer between cultivation boards and nutrient solution surface(interlayer).By using optimal operating parameters at a room temperature of 28℃,the ILCA system achieved similar cooling effects in the absence of a conventional air conditioning system and achieved an energy saving of 50.8% while bringing about positive microclimate change in the interlayer and nutrient solution.This resulted in significantly reduced root growth by 41.7% without a negative influence on lettuce crop yield.Future development in this precise microclimate control method is predicted to replace the conventional cooling(air conditioning)systems for crop production in plant factories.
文摘In order to solve the problems including pipe corrosion, scaling and microbial growth, which severely threat safe op-eration of circulating cooling water system, this paper proposes ion exchange softening and alkalization process to solve these problems and carries out a series of studies to study the feasibility of ion exchange softening and alkaliza-tion process in the simulation process of circulating cooling water system. The studies include product water quality of ion exchange softening and alkalization process, effect on the performance of carbon steel and brass, and the inhibition that suppresses microbial growth. The results indicate that ion exchange softening and alkalization process is feasible to prevent the circulating cooling water system from scaling, pipe corrosion, and microbial growth without any other chemicals. Thus circulating cooling water system can achieve zerodischarge of wastewater.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
基金Project (51405392) supported by the National Natural Science Foundation of ChinaProject (2019T120954) supported by the China Postdoctoral Science Foundation+1 种基金Project (3102019MS0404) supported by Fundamental Research Funds for the Central Universities, ChinaProject (2018BSHQYXMZZ31) supported by the Postdoctoral Science Foundation of Shaanxi Province, China。
文摘Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.
文摘High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.
基金Funded by the National Natural Science Foundation of China(Nos.51778003 and 51308004)the Project of Anhui Provincial Education Department for Sending Visiting Scholars to Research Abroad(No.gxfx ZD2016134)+1 种基金the Anhui Province Higher Education Revitalization Program Talent Project([2014]No.11)the National Key Research and Development Plan(No.2017YFB0310001)
文摘The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively.
基金Financial support from the National Natural Science Foundation of China under Grant(Nos.22022816 and 22078358)
文摘Cooling water systems(CWSs)are extensively utilized in various industries to eliminate the excess heat and converse energy.Studies on CWSs mainly concentrated on finding the optimal cooler network structure.In addition,some works also considered the optimal design under varied operation conditions.However,in these works,once the optimal design of the cooler's network is determined,its arrangement remains fixed and cannot be adapted to accommodate diverse operating conditions.In this work,a flexible topology network concept is proposed to make the adjustment of network structure possible under different operation conditions.The CWS with integrated air cooler and flexible topology network has better overall performance,represented by a mixed integer nonlinear programming(MINLP)model that require advanced tools such as GAMS software.Case studies revealed that the proposed methodology can realize better energy-saving performance,and improve the economic performance under varied operation conditions.The impact of critical flexible nodes on system configuration and economy is achieved by sensitivity analysis.
文摘In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, the supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperatures in the network, have a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.
文摘Closed wet cooling towers(CWCTs) are used widely because of their better water quality and smaller water consumption. However, the operating parameters shown in the technical documents are only for rated conditions in summer, not for any other conditions, especially in low air wet-bulb temperature areas such as those near 0℃. In addition, CWCTs often fail to achieve the designed cooling effect at low air wet-bulb temperatures. A experiment set of CWCT was built, and the performance of the CWCT at low air wet-bulb temperature near 0℃ was investigated. The impact of the operating parameters(air flow rate, cooling water flow rate, and spray water flow rate) on the heat and mass transfer performance of the CWCT was measured and analyzed. The results show the cooling performance of the CWCT at an air wet-bulb temperature 0℃, 2℃, and 4℃ is about 47%–63% of the rated operating condition;the optimal operating parameters of these conditions for the CWCT are just the same as those of the rated operating condition in summer. According to the experimental results, some operating advices are given.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
文摘Firstly, current situation of water resources in Henan Province was analyzed, and then carrying capacity of water resources in Henan Province was assessed based on "degree of water stress" and "balance index of carrying capacity of regional water resources", finally the thinking on adopting air-cooling technology to develop nuclear power in Henan Province was expounded.