Objective: The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila- tion. Its ability to deliver positive pressure ventilation without leakage especially in low flow stat...Objective: The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila- tion. Its ability to deliver positive pressure ventilation without leakage especially in low flow states is still controversy. The aim of this study is to test the possibility of using LMA in pediatric closed circuit controlled ventilation, and to find out the optimum cuff volume to perform closed system ventilation. Methods: Twenty children scheduled for elective surgeries were enrolled in a crossover study. Laryngeal mask airway was used. In stage I, the cuff was inflated with the maximum volume of air as rec- ommended by the manufacturers. Adjustment of volume of air inflated into the LMA cuff to the minimum volume to obtain the effective seal was done at stage II. The leak pressure, intracuff pressure and the leak volume were measured in both stages. Results: The cuff filling volume was significantly lower compared to the maximum cuff inflation volume in stage I. Leakage values showed significantly less values in stage II of the study with smaller cuff inflation volumes. The airway leakage pressure was significantly lower in stage fl in comparison to stage I. Cuff inflation pressure in stage I showed marked elevation which dropped significantly after adjustment of cuff volume in stage I1. Conclusion: Laryngeal mask airway is an effective tool to provide closed circuit controlled ventilation in pediatrics. Inflation of the cuff by the minimum volume of air needed to reach the just sealing pressure is suggested to minimize the leakage volume.展开更多
The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high ove...The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high overload.In this paper,a mechanical switch is designed to enable the IMU based on the analysis of the impact of high overload on the power-supply circuit.In which,parameters of mechanical switch are determined through theoretical calculation and data analysis.The innovation of the proposed structure lies in that the mechanical switch is triggered through the high overload process and could provide a delay signal for the circuit.After all,the proposed switch is tested through mechanical simulation,impact test and practical test.The experimental results show that the designed mechanical switch can effectively and reliably provide the delay for the circuit and guarantee operation of the IMU under high overload.展开更多
文摘Objective: The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila- tion. Its ability to deliver positive pressure ventilation without leakage especially in low flow states is still controversy. The aim of this study is to test the possibility of using LMA in pediatric closed circuit controlled ventilation, and to find out the optimum cuff volume to perform closed system ventilation. Methods: Twenty children scheduled for elective surgeries were enrolled in a crossover study. Laryngeal mask airway was used. In stage I, the cuff was inflated with the maximum volume of air as rec- ommended by the manufacturers. Adjustment of volume of air inflated into the LMA cuff to the minimum volume to obtain the effective seal was done at stage II. The leak pressure, intracuff pressure and the leak volume were measured in both stages. Results: The cuff filling volume was significantly lower compared to the maximum cuff inflation volume in stage I. Leakage values showed significantly less values in stage II of the study with smaller cuff inflation volumes. The airway leakage pressure was significantly lower in stage fl in comparison to stage I. Cuff inflation pressure in stage I showed marked elevation which dropped significantly after adjustment of cuff volume in stage I1. Conclusion: Laryngeal mask airway is an effective tool to provide closed circuit controlled ventilation in pediatrics. Inflation of the cuff by the minimum volume of air needed to reach the just sealing pressure is suggested to minimize the leakage volume.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high overload.In this paper,a mechanical switch is designed to enable the IMU based on the analysis of the impact of high overload on the power-supply circuit.In which,parameters of mechanical switch are determined through theoretical calculation and data analysis.The innovation of the proposed structure lies in that the mechanical switch is triggered through the high overload process and could provide a delay signal for the circuit.After all,the proposed switch is tested through mechanical simulation,impact test and practical test.The experimental results show that the designed mechanical switch can effectively and reliably provide the delay for the circuit and guarantee operation of the IMU under high overload.