By investigating the properties of Hellinger-Toeplitz topologies, we establish a general version of Kalton's cioed graph theorem. From this general version, we deduce a number of new closed graph theorems, which a...By investigating the properties of Hellinger-Toeplitz topologies, we establish a general version of Kalton's cioed graph theorem. From this general version, we deduce a number of new closed graph theorems, which are convenient for application. Particularly we improve some results of Kalton.展开更多
By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the clo...By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.展开更多
In this paper, we give some new results of the coefficient multiplier of some analytic function spaces, characterize the coefficient multiplier spaces (Hα, p Hβ q) and (Ap,α), Aq,β) with 0 < p ≤ 1, p ≤ q ≤∞...In this paper, we give some new results of the coefficient multiplier of some analytic function spaces, characterize the coefficient multiplier spaces (Hα, p Hβ q) and (Ap,α), Aq,β) with 0 < p ≤ 1, p ≤ q ≤∞, 0 ≤α < β < ∞ and show (Hα∞, Hβ∞) = Hβ-α1 with 0 < α < β < ∞.展开更多
For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and th...For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.展开更多
A graph G is close to regular or more precisely a (d, d + k)-graph, if the degree of each vertex of G is between d and d + k. Let d ≥ 2 be an integer, and let G be a connected bipartite (d, d+k)-graph with par...A graph G is close to regular or more precisely a (d, d + k)-graph, if the degree of each vertex of G is between d and d + k. Let d ≥ 2 be an integer, and let G be a connected bipartite (d, d+k)-graph with partite sets X and Y such that |X|- |Y|+1. If G is of order n without an almost perfect matching, then we show in this paper that·n ≥ 6d +7 when k = 1,·n ≥ 4d+ 5 when k = 2,·n ≥ 4d+3 when k≥3.Examples will demonstrate that the given bounds on the order of G are the best possible.展开更多
文摘By investigating the properties of Hellinger-Toeplitz topologies, we establish a general version of Kalton's cioed graph theorem. From this general version, we deduce a number of new closed graph theorems, which are convenient for application. Particularly we improve some results of Kalton.
文摘By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.
文摘In this paper, we give some new results of the coefficient multiplier of some analytic function spaces, characterize the coefficient multiplier spaces (Hα, p Hβ q) and (Ap,α), Aq,β) with 0 < p ≤ 1, p ≤ q ≤∞, 0 ≤α < β < ∞ and show (Hα∞, Hβ∞) = Hβ-α1 with 0 < α < β < ∞.
基金The NSF (Q1107107) of Jiangsu Educational Commission.
文摘For a convex set-valued map between p-normed (0 < p < 1) spaces, we give a criterion for its inverse to be locally Lipschitz of order p. From this we obtain the Robinson-Ursescu Theorem in p-normed spaces and the open mapping and closed graph theorems for closed convex set-valued maps.
文摘A graph G is close to regular or more precisely a (d, d + k)-graph, if the degree of each vertex of G is between d and d + k. Let d ≥ 2 be an integer, and let G be a connected bipartite (d, d+k)-graph with partite sets X and Y such that |X|- |Y|+1. If G is of order n without an almost perfect matching, then we show in this paper that·n ≥ 6d +7 when k = 1,·n ≥ 4d+ 5 when k = 2,·n ≥ 4d+3 when k≥3.Examples will demonstrate that the given bounds on the order of G are the best possible.