By investigating the properties of Hellinger-Toeplitz topologies, we establish a general version of Kalton's cioed graph theorem. From this general version, we deduce a number of new closed graph theorems, which a...By investigating the properties of Hellinger-Toeplitz topologies, we establish a general version of Kalton's cioed graph theorem. From this general version, we deduce a number of new closed graph theorems, which are convenient for application. Particularly we improve some results of Kalton.展开更多
By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the clo...By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.展开更多
In this article, under quite weaker conditions, theorems of Helly’s type for(not necessarily finite) family of partially closed half-spaces are presented in both analytic and geometric forms. Examples are also provid...In this article, under quite weaker conditions, theorems of Helly’s type for(not necessarily finite) family of partially closed half-spaces are presented in both analytic and geometric forms. Examples are also provided to show that these conditions cannot be omitted in general.展开更多
The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
We prove the following theorems.Theorem 1.Suppose f:X→Y is a closed map.X is a ωγ and β space,then Y=Y0∪(∪n=1^∞Yn),where f^-1(y) is countably compact for each y ∈Y0 and Yn is closed discrete in Y for each n≥1...We prove the following theorems.Theorem 1.Suppose f:X→Y is a closed map.X is a ωγ and β space,then Y=Y0∪(∪n=1^∞Yn),where f^-1(y) is countably compact for each y ∈Y0 and Yn is closed discrete in Y for each n≥1,Theorem 2-3:Suppose f:X→Y is a closed map,X is stratifable space,then Y=Y0 ∪(∪n=1^∞Yn),where f^-1(y) is compact for each y∈Y0 and Yn is closed discrete in Y for each n≥1.展开更多
The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of ...The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.展开更多
In this paper ,we introduce a class of generalized mapping called transfer open orclosed valued mapping to generalize the KKM theorem on H-space.Then asapplications,using our H-KKM theorem,we prove some coincidence th...In this paper ,we introduce a class of generalized mapping called transfer open orclosed valued mapping to generalize the KKM theorem on H-space.Then asapplications,using our H-KKM theorem,we prove some coincidence theorems.matching theorems and vector valued minimax inequalities which generalize slightly thecorresponding results in[1,2,4,5,6,7].展开更多
We generalize Biggs Theorem to the case of directed cycles of multi-digraphs allowing to compute the dimension of the directed cycle space independently of the graph representation with linear runtime complexity. By c...We generalize Biggs Theorem to the case of directed cycles of multi-digraphs allowing to compute the dimension of the directed cycle space independently of the graph representation with linear runtime complexity. By considering two-dimensional CW complex of elementary cycles and deriving formulas for the Betti numbers of the associated cellular homology groups, we extend the list of representation independent topological inavariants measuring the graph structure. We prove the computation of the 2nd Betti number to be sharp #<em>P</em> hard in general and present specific representation invariant sub-fillings yielding efficiently computable homology groups. Finally, we suggest how to use the provided structural measures to shed new light on graph theoretical problems as <em>graph embeddings</em>, <em>discrete Morse theory </em>and<em> graph clustering</em>.展开更多
The concept of FC-closed subset in FC-space without any linear structure was introduced. Then, the generalized KKM theorem is proved for FC-closed value mappings under some conditions. The FC-space in the theorem is t...The concept of FC-closed subset in FC-space without any linear structure was introduced. Then, the generalized KKM theorem is proved for FC-closed value mappings under some conditions. The FC-space in the theorem is the generalization of L-convex space and the condition of the mapping with finitely FC-closed value is weaker than that with finitely L-closed value.展开更多
文摘By investigating the properties of Hellinger-Toeplitz topologies, we establish a general version of Kalton's cioed graph theorem. From this general version, we deduce a number of new closed graph theorems, which are convenient for application. Particularly we improve some results of Kalton.
文摘By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.
文摘In this article, under quite weaker conditions, theorems of Helly’s type for(not necessarily finite) family of partially closed half-spaces are presented in both analytic and geometric forms. Examples are also provided to show that these conditions cannot be omitted in general.
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
文摘We prove the following theorems.Theorem 1.Suppose f:X→Y is a closed map.X is a ωγ and β space,then Y=Y0∪(∪n=1^∞Yn),where f^-1(y) is countably compact for each y ∈Y0 and Yn is closed discrete in Y for each n≥1,Theorem 2-3:Suppose f:X→Y is a closed map,X is stratifable space,then Y=Y0 ∪(∪n=1^∞Yn),where f^-1(y) is compact for each y∈Y0 and Yn is closed discrete in Y for each n≥1.
基金Supported by State Key Program of National Natural Science Foundation of China(Grant No.51535009)111 Project of China(Grant No.B13044).
文摘The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.
文摘In this paper ,we introduce a class of generalized mapping called transfer open orclosed valued mapping to generalize the KKM theorem on H-space.Then asapplications,using our H-KKM theorem,we prove some coincidence theorems.matching theorems and vector valued minimax inequalities which generalize slightly thecorresponding results in[1,2,4,5,6,7].
文摘We generalize Biggs Theorem to the case of directed cycles of multi-digraphs allowing to compute the dimension of the directed cycle space independently of the graph representation with linear runtime complexity. By considering two-dimensional CW complex of elementary cycles and deriving formulas for the Betti numbers of the associated cellular homology groups, we extend the list of representation independent topological inavariants measuring the graph structure. We prove the computation of the 2nd Betti number to be sharp #<em>P</em> hard in general and present specific representation invariant sub-fillings yielding efficiently computable homology groups. Finally, we suggest how to use the provided structural measures to shed new light on graph theoretical problems as <em>graph embeddings</em>, <em>discrete Morse theory </em>and<em> graph clustering</em>.
文摘The concept of FC-closed subset in FC-space without any linear structure was introduced. Then, the generalized KKM theorem is proved for FC-closed value mappings under some conditions. The FC-space in the theorem is the generalization of L-convex space and the condition of the mapping with finitely FC-closed value is weaker than that with finitely L-closed value.