Low magnetic susceptibility, low Sr content and hence high Rb/Sr ratio in the lake sediment sequence indicate a weak chemical weathering process under arid and cold climate of the Little Ice Age in a single closed lak...Low magnetic susceptibility, low Sr content and hence high Rb/Sr ratio in the lake sediment sequence indicate a weak chemical weathering process under arid and cold climate of the Little Ice Age in a single closed lake watershed. According to different geochemical behavior between rubidium and strontium in earth surface processes, variation of Rb/Sr ratios in the lake sediment sequence can be used as an effective geochemical proxy with definite climatic significance of chemical weathering in watershed. Unlike chemical weathering process in tropic zone and modern temperate-humid climate, concordant changes in both Sr content and magnetic susceptibility with δ18O values of Dunde ice core suggest that the weak chemical weathering was controlled by air temperature during the Little Ice Age maximum. After the Little Ice Age, chemical weathering intensity was controlled also gradually by precipitation with increasing in temperature.展开更多
基金the National Natural Science Foundation of China (Grant No. 40003001), National Key Basic Research Program (Grant No. G1999043400) and Post Doctoral Foundation of China.
文摘Low magnetic susceptibility, low Sr content and hence high Rb/Sr ratio in the lake sediment sequence indicate a weak chemical weathering process under arid and cold climate of the Little Ice Age in a single closed lake watershed. According to different geochemical behavior between rubidium and strontium in earth surface processes, variation of Rb/Sr ratios in the lake sediment sequence can be used as an effective geochemical proxy with definite climatic significance of chemical weathering in watershed. Unlike chemical weathering process in tropic zone and modern temperate-humid climate, concordant changes in both Sr content and magnetic susceptibility with δ18O values of Dunde ice core suggest that the weak chemical weathering was controlled by air temperature during the Little Ice Age maximum. After the Little Ice Age, chemical weathering intensity was controlled also gradually by precipitation with increasing in temperature.