Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
This paper introduces a switched hyperchaotic system that changes its behavior randomly from one subsystem to another via two switch functions, and its characteristics of symmetry, dissipation, equilibrium, bifurcatio...This paper introduces a switched hyperchaotic system that changes its behavior randomly from one subsystem to another via two switch functions, and its characteristics of symmetry, dissipation, equilibrium, bifurcation diagram, basic dynamics have been analyzed. The hardware implementation of the system is based on Field Programmable Gate Array (FPGA). It is shown that the experimental results are identical with numerical simulations, and the chaotic trajectories are much more complex.展开更多
The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neur...The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies.展开更多
In the last years, some studies have shown that behavior disorder seems in frontotemporal dementia is related to dysfunction in the fronto-subcortical circuitry. <strong>Objectives:</strong> We did a narra...In the last years, some studies have shown that behavior disorder seems in frontotemporal dementia is related to dysfunction in the fronto-subcortical circuitry. <strong>Objectives:</strong> We did a narrative literature review concerning fronto-subcortical circuitry and frontotemporal dementia (FTD). <strong>Methods:</strong> Manuscripts related to fronto-subcortical network and frontotemporal dementia were selected for further analysis. <strong>Results:</strong> From the executions of simple motor actions to the most complex behaviors like goal-direct behavior and social cognition, the fronto-subcortical circuitry involves an intrigued network of fibers that reaches to basal ganglia nuclei. Recently, researchers have shown five parallel fronto-subcortical circuits integrating and segregating information from the frontal cortex to basal ganglia. Understanding the relationship between the fronto-subcortical circuit dysfunctions and neurodegenerative diseases requires studying the functional anatomy and neurochemical basis involved.<strong> Conclusions:</strong> In this view, it is essential to review the functional anatomy of the fronto-subcortical network, and it’s correlated with clinical aspects to pursuing a better therapeutic approach.展开更多
Depression leads to a large social burden because of its substantial impairment and disability in everyday activities. The prevalence and considerable impact of this disorder call for a better understanding of its pat...Depression leads to a large social burden because of its substantial impairment and disability in everyday activities. The prevalence and considerable impact of this disorder call for a better understanding of its pathophysiology to improve the diagnosis, treatment and prevention. Though productive animal models and pathophysiological theories have been documented, it is still very far to uncover the complex array of symptoms caused by depression. Moreover, the neural circuitry mechanism underlying behavioral changes in some depression-like behavior animals is still limited. Changes in the neural circuitry of amygdala, dorsal raphe nucleus, ventral tegmental area, hippocampus, locus coeruleus and nucleus accumbens are related to depression. However, the interactions between individual neural circuitry of different brain areas, have not yet been fully elucidated. The purpose of the present review is to examine and summarize the current evidence for the pathophysiological mechanism of depression, with a focus on the neural circuitry, and emphasize the necessity and importance of integrating individual neural circuitry in different brain regions to understand depression.展开更多
Mental health symptoms secondary to trauma exposure and substance use disorders(SUDs)co-occur frequently in both clinical and community samples.The possibility of a shared aetiology remains an important question in tr...Mental health symptoms secondary to trauma exposure and substance use disorders(SUDs)co-occur frequently in both clinical and community samples.The possibility of a shared aetiology remains an important question in translational neuroscience.Advancements in genetics,basic science,and neuroimaging have led to an improved understanding of the neural basis of these disorders,their frequent comorbidity and high rates of relapse remain a clinical challenge.This project aimed to conduct a review of the field’s current understanding regarding the neural circuitry underlying posttraumatic stress disorder and SUD.A comprehensive review was conducted of available published literature regarding the shared neurobiology of these disorders,and is summarized in detail,including evidence from both animal and clinical studies.Upon summarizing the relevant literature,this review puts forth a hypothesis related to their shared neurobiology within the context of fear processing and reward cues.It provides an overview of brain reward circuitry and its relation to the neurobiology,symptomology,and phenomenology of trauma and substance use.This review provides clinical insights and implications of the proposed theory,including the potential development of novel pharmacological and therapeutic treatments to address this shared neurobiology.Limitations and extensions of this theory are discussed to provide future directions and insights for this shared phenomena.展开更多
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
文摘This paper introduces a switched hyperchaotic system that changes its behavior randomly from one subsystem to another via two switch functions, and its characteristics of symmetry, dissipation, equilibrium, bifurcation diagram, basic dynamics have been analyzed. The hardware implementation of the system is based on Field Programmable Gate Array (FPGA). It is shown that the experimental results are identical with numerical simulations, and the chaotic trajectories are much more complex.
文摘The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies.
文摘In the last years, some studies have shown that behavior disorder seems in frontotemporal dementia is related to dysfunction in the fronto-subcortical circuitry. <strong>Objectives:</strong> We did a narrative literature review concerning fronto-subcortical circuitry and frontotemporal dementia (FTD). <strong>Methods:</strong> Manuscripts related to fronto-subcortical network and frontotemporal dementia were selected for further analysis. <strong>Results:</strong> From the executions of simple motor actions to the most complex behaviors like goal-direct behavior and social cognition, the fronto-subcortical circuitry involves an intrigued network of fibers that reaches to basal ganglia nuclei. Recently, researchers have shown five parallel fronto-subcortical circuits integrating and segregating information from the frontal cortex to basal ganglia. Understanding the relationship between the fronto-subcortical circuit dysfunctions and neurodegenerative diseases requires studying the functional anatomy and neurochemical basis involved.<strong> Conclusions:</strong> In this view, it is essential to review the functional anatomy of the fronto-subcortical network, and it’s correlated with clinical aspects to pursuing a better therapeutic approach.
文摘Depression leads to a large social burden because of its substantial impairment and disability in everyday activities. The prevalence and considerable impact of this disorder call for a better understanding of its pathophysiology to improve the diagnosis, treatment and prevention. Though productive animal models and pathophysiological theories have been documented, it is still very far to uncover the complex array of symptoms caused by depression. Moreover, the neural circuitry mechanism underlying behavioral changes in some depression-like behavior animals is still limited. Changes in the neural circuitry of amygdala, dorsal raphe nucleus, ventral tegmental area, hippocampus, locus coeruleus and nucleus accumbens are related to depression. However, the interactions between individual neural circuitry of different brain areas, have not yet been fully elucidated. The purpose of the present review is to examine and summarize the current evidence for the pathophysiological mechanism of depression, with a focus on the neural circuitry, and emphasize the necessity and importance of integrating individual neural circuitry in different brain regions to understand depression.
文摘Mental health symptoms secondary to trauma exposure and substance use disorders(SUDs)co-occur frequently in both clinical and community samples.The possibility of a shared aetiology remains an important question in translational neuroscience.Advancements in genetics,basic science,and neuroimaging have led to an improved understanding of the neural basis of these disorders,their frequent comorbidity and high rates of relapse remain a clinical challenge.This project aimed to conduct a review of the field’s current understanding regarding the neural circuitry underlying posttraumatic stress disorder and SUD.A comprehensive review was conducted of available published literature regarding the shared neurobiology of these disorders,and is summarized in detail,including evidence from both animal and clinical studies.Upon summarizing the relevant literature,this review puts forth a hypothesis related to their shared neurobiology within the context of fear processing and reward cues.It provides an overview of brain reward circuitry and its relation to the neurobiology,symptomology,and phenomenology of trauma and substance use.This review provides clinical insights and implications of the proposed theory,including the potential development of novel pharmacological and therapeutic treatments to address this shared neurobiology.Limitations and extensions of this theory are discussed to provide future directions and insights for this shared phenomena.