The increasing trend toward dematerialization and digitalization has prompted a surge in the adoption of IT service providers, offering cost-effective alternatives to traditional local services. Consequently, cloud se...The increasing trend toward dematerialization and digitalization has prompted a surge in the adoption of IT service providers, offering cost-effective alternatives to traditional local services. Consequently, cloud services have become prevalent across various industries. While these services offer undeniable benefits, they face significant threats, particularly concerning the sensitivity of the data they handle. Many existing mathematical models struggle to accurately depict the complex scenarios of cloud systems. In response to this challenge, this paper proposes a behavioral model for ransomware propagation within such environments. In this model, each component of the environment is defined as an agent responsible for monitoring the propagation of malware. Given the distinct characteristics and criticality of these agents, the impact of malware can vary significantly. Scenario attacks are constructed based on real-world vulnerabilities documented in the Common Vulnerabilities and Exposures (CVEs) through the National Vulnerability Database. Defender actions are guided by an Intrusion Detection System (IDS) guideline. This research aims to provide a comprehensive framework for understanding and addressing ransomware threats in cloud systems. By leveraging an agent- based approach and real-world vulnerability data, our model offers valuable insights into detection and mitigation strategies for safeguarding sensitive cloud-based assets.展开更多
This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the per...This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the perspective of blocking attacks. On this basis, the host protection mobile agent protection technology is selected, and a method to enhance the security protection of mobile agents (referred to as IEOP method) is proposed. The method first encrypts the mobile agent code using the encryption function, and then encapsulates the encrypted mobile agent with the improved EOP protocol IEOP, and then traces the suspicious execution result. Experiments show that using this method can block most malicious attacks on mobile agents, and can protect the integrity and confidentiality of mobile agents, but the increment of mobile agent tour time is not large.展开更多
The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many d...The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many different locations and interconnected by high speed networks. CDS, like any other emerging technology, is experiencing growing pains. It is immature, it is fragmented and it lacks standardization. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this paper a comprehensive security framework based on Multi-Agent System (MAS) architecture for CDS to facilitate confidentiality, correctness assurance, availability and integrity of users' data in the cloud is proposed. Our security framework consists of two main layers as agent layer and CDS layer. Our propose MAS architecture includes main five types of agents: Cloud Service Provider Agent (CSPA), Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). In order to verify our proposed security framework based on MAS architecture, pilot study is conducted using a questionnaire survey. Rasch Methodology is used to analyze the pilot data. Item reliability is found to be poor and a few respondents and items are identified as misfits with distorted measurements. As a result, some problematic questions are revised and some predictably easy questions are excluded from the questionnaire. A prototype of the system is implemented using Java. To simulate the agents, oracle database packages and triggers are used to implement agent functions and oracle jobs are utilized to create agents.展开更多
Goud computing is a new paradigm in which dynamic and virtualized computing resources are provided as services over the Internet. However, because cloud resource is open and dynamically configured, resource allocation...Goud computing is a new paradigm in which dynamic and virtualized computing resources are provided as services over the Internet. However, because cloud resource is open and dynamically configured, resource allocation and scheduling are extremely important challenges in cloud infrastructure. Based on distributed agents, this paper presents trusted data acquisition mechanism for efficient scheduling cloud resources to satisfy various user requests. Our mechanism defines, collects and analyzes multiple key trust targets of cloud service resources based on historical information of servers in a cloud data center. As a result, using our trust computing mechanism, cloud providers can utilize their resources efficiently and also provide highly trusted resources and services to many users.展开更多
文摘The increasing trend toward dematerialization and digitalization has prompted a surge in the adoption of IT service providers, offering cost-effective alternatives to traditional local services. Consequently, cloud services have become prevalent across various industries. While these services offer undeniable benefits, they face significant threats, particularly concerning the sensitivity of the data they handle. Many existing mathematical models struggle to accurately depict the complex scenarios of cloud systems. In response to this challenge, this paper proposes a behavioral model for ransomware propagation within such environments. In this model, each component of the environment is defined as an agent responsible for monitoring the propagation of malware. Given the distinct characteristics and criticality of these agents, the impact of malware can vary significantly. Scenario attacks are constructed based on real-world vulnerabilities documented in the Common Vulnerabilities and Exposures (CVEs) through the National Vulnerability Database. Defender actions are guided by an Intrusion Detection System (IDS) guideline. This research aims to provide a comprehensive framework for understanding and addressing ransomware threats in cloud systems. By leveraging an agent- based approach and real-world vulnerability data, our model offers valuable insights into detection and mitigation strategies for safeguarding sensitive cloud-based assets.
基金supported by the National Natural Science Foundation of China (61772196 61472136)+3 种基金the Hunan Provincial Focus Social Science Fund (2016ZDB006)Hunan Provincial Social Science Achievement Review Committee results appraisal identification project (Xiang social assessment 2016JD05)Key Project of Hunan Provincial Social Science Achievement Review Committee (XSP 19ZD1005)the financial support provided by the Key Laboratory of Hunan Province for New Retail Virtual Reality Technology (2017TP1026)
文摘This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the perspective of blocking attacks. On this basis, the host protection mobile agent protection technology is selected, and a method to enhance the security protection of mobile agents (referred to as IEOP method) is proposed. The method first encrypts the mobile agent code using the encryption function, and then encapsulates the encrypted mobile agent with the improved EOP protocol IEOP, and then traces the suspicious execution result. Experiments show that using this method can block most malicious attacks on mobile agents, and can protect the integrity and confidentiality of mobile agents, but the increment of mobile agent tour time is not large.
文摘The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many different locations and interconnected by high speed networks. CDS, like any other emerging technology, is experiencing growing pains. It is immature, it is fragmented and it lacks standardization. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this paper a comprehensive security framework based on Multi-Agent System (MAS) architecture for CDS to facilitate confidentiality, correctness assurance, availability and integrity of users' data in the cloud is proposed. Our security framework consists of two main layers as agent layer and CDS layer. Our propose MAS architecture includes main five types of agents: Cloud Service Provider Agent (CSPA), Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). In order to verify our proposed security framework based on MAS architecture, pilot study is conducted using a questionnaire survey. Rasch Methodology is used to analyze the pilot data. Item reliability is found to be poor and a few respondents and items are identified as misfits with distorted measurements. As a result, some problematic questions are revised and some predictably easy questions are excluded from the questionnaire. A prototype of the system is implemented using Java. To simulate the agents, oracle database packages and triggers are used to implement agent functions and oracle jobs are utilized to create agents.
基金supported by the National Basic Research Program of China (973 Program) (No. 2012CB821200 (2012CB821206))the National Nature Science Foundation of China (No.61003281, No.91024001 and No.61070142)+1 种基金Beijing Natural Science Foundation (Study on Internet Multi-mode Area Information Accurate Searching and Mining Based on Agent, No.4111002)the Chinese Universities Scientific Fund under Grant No.BUPT 2009RC0201
文摘Goud computing is a new paradigm in which dynamic and virtualized computing resources are provided as services over the Internet. However, because cloud resource is open and dynamically configured, resource allocation and scheduling are extremely important challenges in cloud infrastructure. Based on distributed agents, this paper presents trusted data acquisition mechanism for efficient scheduling cloud resources to satisfy various user requests. Our mechanism defines, collects and analyzes multiple key trust targets of cloud service resources based on historical information of servers in a cloud data center. As a result, using our trust computing mechanism, cloud providers can utilize their resources efficiently and also provide highly trusted resources and services to many users.