A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine t...A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.展开更多
The data series of monthly clouldiness over global ocean from COADS was compared with that of from satellite Nimbus-7 during April 1979 to March 1985. The correspondence between them is good. Both the two methods of o...The data series of monthly clouldiness over global ocean from COADS was compared with that of from satellite Nimbus-7 during April 1979 to March 1985. The correspondence between them is good. Both the two methods of observation can provide useful information of the distribution of cloudiness and the two data sets can be mutually complementary.展开更多
Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-Sep...Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and corona discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivity measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mechanism of vertical mixing in clouds lends support to convective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.展开更多
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons ...The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L. , which corresponds to the level at almost 3 / 4 th of the total vertical thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L. The dominant physical mechanism of rain-formation in these summer monsoon clouds is the collision-coalescence process.展开更多
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ...To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.展开更多
基金the Chinese Academy of Meteorological Sciences Basic Scientific and Operational Project(observation and retrieval methods of microphysics and dynamic parameters of cloud and precipitation with multi-wavelength remote sensing)the National Key Program for Developing Basic Sciences under Grant 2012CB417202+1 种基金the Meteorological Special Project(study and data process and key technology for space-borne precipitation radar)the National Natural Science Foundation of China(Grant Nos.40775021 and 41075098)
文摘A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.
文摘The data series of monthly clouldiness over global ocean from COADS was compared with that of from satellite Nimbus-7 during April 1979 to March 1985. The correspondence between them is good. Both the two methods of observation can provide useful information of the distribution of cloudiness and the two data sets can be mutually complementary.
文摘Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and corona discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivity measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mechanism of vertical mixing in clouds lends support to convective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein.
文摘The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L. , which corresponds to the level at almost 3 / 4 th of the total vertical thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L. The dominant physical mechanism of rain-formation in these summer monsoon clouds is the collision-coalescence process.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100304)the Chinese Natural Science Foundation (Grant No. 41005073)
文摘To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.