Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model deve...Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.展开更多
Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluat...Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.展开更多
This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4...This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.展开更多
The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde ...The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected.展开更多
Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics...Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model(FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing(CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere(TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2(1%) and 3 W m-2(3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region(AMR). The results indicate that FAMIL1.1 well reproduces the summer–winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed.展开更多
The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes...The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes of AO need to be further discussed.In this paper,we use the fifth state-of-the-art reanalysis at European Centre for Medium-Range Weather Forecasts(ERA5)from 1979 to 2020 to investigate the relationship between AO and the surface springtime longwave(LW)cloud radiative forcing(CRF),summertime shortwave(SW)CRF in the Arctic region(65°-90°N).In addition,the contribution of CRF induced by AO to the sea ice change is also discussed.Results indicate that the positive(negative)anomalies of springtime LW CRF and summertime SW CRF are generally detected over the Arctic Ocean during the enhanced positive(negative)AO phase in spring and summer,respectively.Meanwhile,while the LW(SW)CRF generally has a positive correlation with AO index(AOI)in spring(summer)over the entire Arctic Ocean,this correlation is statistically significant over 70°-85°N and 120°W-90°E(i.e.,region of interest(ROI))in both seasons.Moreover,the response of CRF to the atmospheric conditions varies in spring and summer.We also find that the positive springtime(summertime)AOI tends to decrease(increase)the sea ice in September,and this phenomenon is especially prominent over the ROI.The sensitivity study among sea ice extent,CRF and AOI further reveals that decreases(increases)in September sea ice over the ROI are partly attributed to the springtime LW(summertime SW)CRF during the positive AOI.The present study provides a new pattern of AO affecting sea ice change via cloud radiative effects,which might benefit the sea ice forecast improvement.展开更多
Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Ind...Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”.展开更多
The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/ae...The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking tile percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60~N, 60~S) as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about -0.67% (-0.6 W m-2) and -0.82% (-2.0 W m-2) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 W m-2) and -2.12% (-7.8 W m 2) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by" using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures.展开更多
Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radia...Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radiation Budget(SRB3.0) and the International Satellite Cloud Climatology Project(ISCCP-FD) during 1984– 2007 are analyzed and compared. Our analysis suggests that these datasets show encouraging agreement in basin-wide averaged seasonal cycle and spatial distribution of surface albedo; net surface shortwave and all-wave radiative fluxes; and shortwave, longwave, and all-wave cloud radiative forcings. However, a systematic large discrepancy is detected for the net surface longwave radiative flux between the two data sets at a magnitude of ~ 23 W m–2, which is primarily attributed to significant differences in surface temperature, particularly from April to June. Moreover, the largest difference in surface shortwave and all-wave cloud radiative forcings between the two data sets is apparent in early June at a magnitude of 30 W m–2.展开更多
A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented,...A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are -60.8 (40.9), 67.5 (49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of -0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models.展开更多
The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as seve...The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP.展开更多
To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, b...To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, by using an improved radiative transfer model and the global distribution of dust mass concentra-tion given by GADS (Global Aerosol Data Set). The results show that the global means of the solar forcing due to dust aerosol at the tropopause for winter and summer are -0.48 and -0.50 W m-2, respectively; the corresponding values for the longwave forcing due to dust are 0.11 and 0.09 W m-2, respectively. At the surface, the global means of the solar forcing clue to dust are -1.36 W m-2 for winter and -1.56 W m-2 for summer, whereas the corresponding values for the longwave forcing are 0.27 and 0.23 W m-2, respectively. This work points out that the absolute values of the solar forcing due to dust aerosol at both the tropopause and surface increase linearly with the cosine of solar zenith angle and surface albedo. The solar zenith angle influences both the strength and distribution of the solar forcing greatly. Clouds exert great effects on the direct radiative forcing of dust, depending on many factors including cloud cover, cloud height, cloud water path, surface albedo, solar zenith angle, etc. The effects of low clouds and middle clouds are larger than those of high clouds. The existence of clouds reduces the longwave radiative forcing at the tropopause, where the influences of low clouds are the most obvious. Therefore, the impacts of clouds should not be ignored when estimating the direct radiative forcing due to dust aerosol.展开更多
ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC...ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.展开更多
Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albed...Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albedo, and thereby exert a radiative influence on climate (the first indirect aerosol effect). In this paper, based on various relationships between cloud droplet spectral dispersion (c) and cloud droplet number concentration (Nc), we analytically derive the corresponding expressions of the cloud radiative forcing induced by changes in the cloud droplet number concentration. Further quantitative evaluation indicates that the cloud radiative forcing induced by aerosols for the different ^-Nc relationships varies from -29.1% to 25.2%, compared to the case without considering spectral dispersion (e = 0). Our results suggest that an accurate description of e - Nc relationships helps to reduce the uncertainty of the first indirect aerosol effect and advances our scientific understanding of aerosol-cloud-radiation interactions.展开更多
The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for...The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction.The results reveal that clouds mainly experience an isolated evolution in the STHs,which is designated in this study by the 1540 gpm geopotential lines at 850 hPa.In the STH domain throughout the Northern Hemisphere,the average amount of total clouds exceeds 30%.Low clouds dominate in the STH domain,contributing over 60%of total cloud amount within the Pacific subtropical high and over 40%within the Atlantic subtropical high.The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa,which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface.Furthermore,clouds present great geographical incoherence within the STH domain.In the eastern STHs,the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon,while the amount of high clouds remains stable throughout the day.Conversely,in the western STHs,the diurnal amplitude of low and middle clouds is less than three,while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening.Among the nine cloud categories,stratocumulus clouds with greater optical thickness account for the most under STH conditions,no matter their occurrence or amount,causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence.展开更多
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic...The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty.展开更多
A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emis...A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.展开更多
The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against t...The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against two satellite observational datasets, and the possible causes for the DSSR bias of the models are further investigated by dividing the subtropical Asia-Pacific region into five areas. Most of the CMIP5 models underestimate DSSR over the oceans, but overestimate DSSR over land. Aside from the Mediterranean-West Asia (MWA) and Central Asia (CA) areas, both the biases in annual and seasonal mean DSSR are well explained by the bias in surface shortwave cloud radiative forcing (CRF), with an overestimation of the CRF effect over the subtropical North Pacific but an underestimation over other land regions. The effect of cloud plays a dominant role over the subtropical Asia-Pacific region, with relatively weaker influences over MWA and CA in boreal summer and fall.展开更多
采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4...采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4月16日、5月16日、2007年3月30日3次过程沙尘云区大气层顶云的净辐射强迫绝对值比纯云区分别减小了7.1%,17.2%和3.1%,云的冷却效应受到不同程度抑制.纯云区与沙尘云区云的光学特性参量的对比分析结果表明,绝大部分沙尘云区的云粒径、云水路径和光学厚度值均比纯云区的要小.展开更多
基金supported jointly by the National Natural Science Foundation of China (Grant Nos 40890054 and 40821092)the National Basic Research Program of China (Grant No 2010CB951904)National Key Technologies R&D Program (Grant No 2007BAC29B03)
文摘Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.
基金supported by the Major National Basic Research Program of China(973 Program)on Global Change(Grant No.2010CB951902)the National Natural Science Foundation of China(Grant No.41221064)the Basic Scientific Research and Operation Foundation of CAMS(Grant No.2010Z003)
文摘Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.
基金supported by the CAS project under Grant No. KZCX2-YW-Q11-01the Major State Basic Research Development Program of China under Grant No. 2006CB403607the National Natural Science Foundation of China (Grant Nos.40523001, 40821092, 40875034)
文摘This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.
基金support from the National Key R&D Program of China under Grants Nos.2017YFC1501401 and 2017YFC0212803the National Natural Science Foundation under Grant No.41771399the Chinese Academy of Meteorological Sciences under Grant No.2018Y014。
文摘The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected.
基金funded by the National Natural Science Foundation of China (Grants 41675100, 91737306, and U1811464)
文摘Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model(FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing(CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere(TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2(1%) and 3 W m-2(3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region(AMR). The results indicate that FAMIL1.1 well reproduces the summer–winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed.
基金The National Natural Science Foundation of China under contract Nos 42174016 and 42076240the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources under contract No.QNHX2122the Shanghai Pujiang Program under contract No.19PJ1404300。
文摘The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes of AO need to be further discussed.In this paper,we use the fifth state-of-the-art reanalysis at European Centre for Medium-Range Weather Forecasts(ERA5)from 1979 to 2020 to investigate the relationship between AO and the surface springtime longwave(LW)cloud radiative forcing(CRF),summertime shortwave(SW)CRF in the Arctic region(65°-90°N).In addition,the contribution of CRF induced by AO to the sea ice change is also discussed.Results indicate that the positive(negative)anomalies of springtime LW CRF and summertime SW CRF are generally detected over the Arctic Ocean during the enhanced positive(negative)AO phase in spring and summer,respectively.Meanwhile,while the LW(SW)CRF generally has a positive correlation with AO index(AOI)in spring(summer)over the entire Arctic Ocean,this correlation is statistically significant over 70°-85°N and 120°W-90°E(i.e.,region of interest(ROI))in both seasons.Moreover,the response of CRF to the atmospheric conditions varies in spring and summer.We also find that the positive springtime(summertime)AOI tends to decrease(increase)the sea ice in September,and this phenomenon is especially prominent over the ROI.The sensitivity study among sea ice extent,CRF and AOI further reveals that decreases(increases)in September sea ice over the ROI are partly attributed to the springtime LW(summertime SW)CRF during the positive AOI.The present study provides a new pattern of AO affecting sea ice change via cloud radiative effects,which might benefit the sea ice forecast improvement.
基金the National Natural Science Foundation of China (GrantNo.40023001) Chinese Academy of Sciences under grant " Hundred Talent
文摘Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB951901)the U.S. DOE office of Biological and Environmental Research (BER) (Grant No. DE-SC0001683)+2 种基金the National Natural Science Foundation of China (Grant Nos. 40605026 and 40830103)the "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05110101)the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
文摘The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking tile percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60~N, 60~S) as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about -0.67% (-0.6 W m-2) and -0.82% (-2.0 W m-2) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 W m-2) and -2.12% (-7.8 W m 2) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by" using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures.
基金supported by the National Basic Research Program of China(2011CB30970)the National Natural Science Foundation of China(41176169 and 40930848)
文摘Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radiation Budget(SRB3.0) and the International Satellite Cloud Climatology Project(ISCCP-FD) during 1984– 2007 are analyzed and compared. Our analysis suggests that these datasets show encouraging agreement in basin-wide averaged seasonal cycle and spatial distribution of surface albedo; net surface shortwave and all-wave radiative fluxes; and shortwave, longwave, and all-wave cloud radiative forcings. However, a systematic large discrepancy is detected for the net surface longwave radiative flux between the two data sets at a magnitude of ~ 23 W m–2, which is primarily attributed to significant differences in surface temperature, particularly from April to June. Moreover, the largest difference in surface shortwave and all-wave cloud radiative forcings between the two data sets is apparent in early June at a magnitude of 30 W m–2.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB955301)Key Program of the National Natural Science Foundation of China(41430425 and 41205015)China 111 Project(B13045)
文摘A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are -60.8 (40.9), 67.5 (49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of -0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models.
文摘The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP.
基金Supported by the National Key Technology R&D Program under Grant No.2008BAC40B02the National Basic Research Program of China under Grant No.2011CB403405the Special Fund for Public Welfare (meteorology) by the Ministry of Science and Technology under Grant No.GYHY200706036
文摘To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, by using an improved radiative transfer model and the global distribution of dust mass concentra-tion given by GADS (Global Aerosol Data Set). The results show that the global means of the solar forcing due to dust aerosol at the tropopause for winter and summer are -0.48 and -0.50 W m-2, respectively; the corresponding values for the longwave forcing due to dust are 0.11 and 0.09 W m-2, respectively. At the surface, the global means of the solar forcing clue to dust are -1.36 W m-2 for winter and -1.56 W m-2 for summer, whereas the corresponding values for the longwave forcing are 0.27 and 0.23 W m-2, respectively. This work points out that the absolute values of the solar forcing due to dust aerosol at both the tropopause and surface increase linearly with the cosine of solar zenith angle and surface albedo. The solar zenith angle influences both the strength and distribution of the solar forcing greatly. Clouds exert great effects on the direct radiative forcing of dust, depending on many factors including cloud cover, cloud height, cloud water path, surface albedo, solar zenith angle, etc. The effects of low clouds and middle clouds are larger than those of high clouds. The existence of clouds reduces the longwave radiative forcing at the tropopause, where the influences of low clouds are the most obvious. Therefore, the impacts of clouds should not be ignored when estimating the direct radiative forcing due to dust aerosol.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41275077 and 41105054)the National Basic Research Program of China (973 Program:2010CB951902)+1 种基金the China Meteorological Administration (Grant Nos.GYHY201106022 and GYHY201306048)the Sun Yat-sen University "985 Project", Phase 3
文摘ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 41105071)the CAS Strategic Priority Research Program (Grant No. XDA05110101)the National Basic Research Program of China (Grant No. 2011CB403406)
文摘Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albedo, and thereby exert a radiative influence on climate (the first indirect aerosol effect). In this paper, based on various relationships between cloud droplet spectral dispersion (c) and cloud droplet number concentration (Nc), we analytically derive the corresponding expressions of the cloud radiative forcing induced by changes in the cloud droplet number concentration. Further quantitative evaluation indicates that the cloud radiative forcing induced by aerosols for the different ^-Nc relationships varies from -29.1% to 25.2%, compared to the case without considering spectral dispersion (e = 0). Our results suggest that an accurate description of e - Nc relationships helps to reduce the uncertainty of the first indirect aerosol effect and advances our scientific understanding of aerosol-cloud-radiation interactions.
基金supported by the Special Funds for Public Welfare of China(Grant No.GYHY-QX-2007)the National Natural Science Foundation of China(Grant Nos.40730950,40675027,and 40805007).
文摘The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction.The results reveal that clouds mainly experience an isolated evolution in the STHs,which is designated in this study by the 1540 gpm geopotential lines at 850 hPa.In the STH domain throughout the Northern Hemisphere,the average amount of total clouds exceeds 30%.Low clouds dominate in the STH domain,contributing over 60%of total cloud amount within the Pacific subtropical high and over 40%within the Atlantic subtropical high.The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa,which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface.Furthermore,clouds present great geographical incoherence within the STH domain.In the eastern STHs,the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon,while the amount of high clouds remains stable throughout the day.Conversely,in the western STHs,the diurnal amplitude of low and middle clouds is less than three,while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening.Among the nine cloud categories,stratocumulus clouds with greater optical thickness account for the most under STH conditions,no matter their occurrence or amount,causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence.
基金supported by the National Key R&D Program of China(2017YFA0603502)(Key)National Natural Science Foundation of China(91644211)S&T Development Fund of CAMS(2021KJ004).
文摘The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-04)the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA05100502)
文摘A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.
基金supported by the Special Public Welfare Research Fund of the China Meteorological Administration[grant number GYHY201406001]the Open Research Fund Program of Plateau Atmosphere and Environmental Key Laboratory of Sichuan Province[grant number PAEKL-2016-C4]
文摘The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against two satellite observational datasets, and the possible causes for the DSSR bias of the models are further investigated by dividing the subtropical Asia-Pacific region into five areas. Most of the CMIP5 models underestimate DSSR over the oceans, but overestimate DSSR over land. Aside from the Mediterranean-West Asia (MWA) and Central Asia (CA) areas, both the biases in annual and seasonal mean DSSR are well explained by the bias in surface shortwave cloud radiative forcing (CRF), with an overestimation of the CRF effect over the subtropical North Pacific but an underestimation over other land regions. The effect of cloud plays a dominant role over the subtropical Asia-Pacific region, with relatively weaker influences over MWA and CA in boreal summer and fall.
文摘采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4月16日、5月16日、2007年3月30日3次过程沙尘云区大气层顶云的净辐射强迫绝对值比纯云区分别减小了7.1%,17.2%和3.1%,云的冷却效应受到不同程度抑制.纯云区与沙尘云区云的光学特性参量的对比分析结果表明,绝大部分沙尘云区的云粒径、云水路径和光学厚度值均比纯云区的要小.