期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Water Vapor and Cloud Radiative Forcings over the Pacific Ocean Simulated by the LASG/IAP AGCM:Sensitivity to Convection Schemes 被引量:8
1
作者 吴春强 周天军 +1 位作者 孙德征 包庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期80-98,共19页
Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model deve... Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed. 展开更多
关键词 SAMIL convection scheme cloud radiative forcing greenhouse effect
下载PDF
Shortwave Cloud Radiative Forcing on Major Stratus Cloud Regions in AMIP-type Simulations of CMIP3 and CMIP5 Models 被引量:6
2
作者 张祎 李建 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期884-907,共24页
Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluat... Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments. 展开更多
关键词 shortwave cloud radiative forcing CMIP stratus clouds IPCC
下载PDF
Cloud Radiative Forcing in Asian Monsoon Region Simulated by IPCC AR4 AMIP Models 被引量:8
3
作者 李剑东 刘屹岷 吴国雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期923-939,共17页
This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4... This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region. 展开更多
关键词 cloud radiative forcing (CRF) AMIP models Asian monsoon region Tibet Plateau (TP) active convective region
下载PDF
The Significant Role of Radiosonde-measured Cloud-base Height in the Estimation of Cloud Radiative Forcing 被引量:3
4
作者 Hui XU Jianping GUO +8 位作者 Jian LI Lin LIU Tianmeng CHEN Xiaoran GUO Yanmin LYU Ding WANG Yi HAN Qi CHEN Yong ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1552-1565,共14页
The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde ... The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected. 展开更多
关键词 cloud base height radiOSONDE radiative forcing China CLIMATOLOGY
下载PDF
LASG Global AGCM with a Two-moment Cloud Microphysics Scheme:Energy Balance and Cloud Radiative Forcing Characteristics
5
作者 Lei WANG Qing BAO +9 位作者 Wei-Chyung WANG Yimin LIU Guo-Xiong WU Linjiong ZHOU JiANDong LI Hua GONG Guokui NIAN Jinxiao LI Xiaocong WANG Bian HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第7期697-710,共14页
Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics... Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model(FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing(CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere(TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2(1%) and 3 W m-2(3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region(AMR). The results indicate that FAMIL1.1 well reproduces the summer–winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed. 展开更多
关键词 two-moment cloud MICROPHYSICS SCHEME aerosol–cloud interactions energy balance cloud radiative forcing Asian monsoon region
下载PDF
Impact of Arctic Oscillation on cloud radiative forcing and September sea ice retreat
6
作者 Yanxing Li Liang Chang Guoping Gao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期131-139,共9页
The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes... The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes of AO need to be further discussed.In this paper,we use the fifth state-of-the-art reanalysis at European Centre for Medium-Range Weather Forecasts(ERA5)from 1979 to 2020 to investigate the relationship between AO and the surface springtime longwave(LW)cloud radiative forcing(CRF),summertime shortwave(SW)CRF in the Arctic region(65°-90°N).In addition,the contribution of CRF induced by AO to the sea ice change is also discussed.Results indicate that the positive(negative)anomalies of springtime LW CRF and summertime SW CRF are generally detected over the Arctic Ocean during the enhanced positive(negative)AO phase in spring and summer,respectively.Meanwhile,while the LW(SW)CRF generally has a positive correlation with AO index(AOI)in spring(summer)over the entire Arctic Ocean,this correlation is statistically significant over 70°-85°N and 120°W-90°E(i.e.,region of interest(ROI))in both seasons.Moreover,the response of CRF to the atmospheric conditions varies in spring and summer.We also find that the positive springtime(summertime)AOI tends to decrease(increase)the sea ice in September,and this phenomenon is especially prominent over the ROI.The sensitivity study among sea ice extent,CRF and AOI further reveals that decreases(increases)in September sea ice over the ROI are partly attributed to the springtime LW(summertime SW)CRF during the positive AOI.The present study provides a new pattern of AO affecting sea ice change via cloud radiative effects,which might benefit the sea ice forecast improvement. 展开更多
关键词 ARCTIC Arctic Oscillation cloud radiative forcing sea ice retreat
下载PDF
Comparing Cloud Radiative Properties between the Eastern China and the Indian Monsoon Region 被引量:7
7
作者 宇如聪 俞永强 张明华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第6期1090-1102,共13页
Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Ind... Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”. 展开更多
关键词 cloud radiative forcing cloud Fraction Monsoon Nimbostratus
下载PDF
Cloud-Aerosol-Radiation (CAR) Ensemble Modeling System: Overall Accuracy and Efficiency 被引量:4
8
作者 Feng ZHANG Xin-Zhong LIANG +2 位作者 曾庆存 Yu GU Shenjian SU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期955-973,共19页
The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/ae... The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking tile percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60~N, 60~S) as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about -0.67% (-0.6 W m-2) and -0.82% (-2.0 W m-2) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 W m-2) and -2.12% (-7.8 W m 2) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by" using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures. 展开更多
关键词 cloud radiative forcing radiATION CAR ENSEMBLE
下载PDF
Intercomparison of Surface Radiative Fluxes in the Arctic Ocean
9
作者 SHI Xiao-Xu LIU Ji-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期434-439,共6页
Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radia... Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radiation Budget(SRB3.0) and the International Satellite Cloud Climatology Project(ISCCP-FD) during 1984– 2007 are analyzed and compared. Our analysis suggests that these datasets show encouraging agreement in basin-wide averaged seasonal cycle and spatial distribution of surface albedo; net surface shortwave and all-wave radiative fluxes; and shortwave, longwave, and all-wave cloud radiative forcings. However, a systematic large discrepancy is detected for the net surface longwave radiative flux between the two data sets at a magnitude of ~ 23 W m–2, which is primarily attributed to significant differences in surface temperature, particularly from April to June. Moreover, the largest difference in surface shortwave and all-wave cloud radiative forcings between the two data sets is apparent in early June at a magnitude of 30 W m–2. 展开更多
关键词 Arctic Ocean surface albedo surface radiative flux cloud forcing
下载PDF
Cloud Radiative Forcing Induced by Layered Clouds and Associated Impact on the Atmospheric Heating Rate 被引量:1
10
作者 吕巧谊 李积明 +1 位作者 王天河 黄建平 《Journal of Meteorological Research》 SCIE CSCD 2015年第5期779-792,共14页
A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented,... A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are -60.8 (40.9), 67.5 (49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of -0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models. 展开更多
关键词 single-layered cloud multi-layered cloud cloud fraction cloud radiative forcing cloud radiativeheating rate
原文传递
Climatic and Environmental Impacts of Dust over the Tibetan Plateau: An Overview
11
作者 Ashok Kumar Pokharel Shree Pandey 《Journal of Environmental Protection》 2024年第9期907-920,共14页
The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as seve... The Tibetan Plateau (TP), located at a height of nearly 4000 m above sea level, has a unique setting that effects the environment of the whole of northern hemisphere. It acts as the “water reservoir” of Asia as several important rivers originate from this region. Therefore, even slight alternations in the TP’s hydrological cycle may have profound ecological and social impacts. However, it is experiencing a significant increase in accumulation of dust from local and global sources. The impact of dust on the region’s climate has become an active area of research. Further, the study of sources of dust arriving at the TP is also critical. Accumulation of dust is impacting temperature, snow cover, glaciers, water resources, biodiversity and soil desertification. This manuscript tries to provide a comprehensive summary of the impact of dust on weather, climate, and environmental components of the TP. The impact of dust on clouds, radiative energy, precipitation, atmospheric circulation, snow and ice cover, soil, air quality, and river water quality of the TP are discussed. It further discusses the steps immediately needed to mitigate the devastating impact of dust on the fragile ecosystem of the TP. 展开更多
关键词 Tibetan Plateau DUST cloudS Precipitation radiative forcing SNOW
下载PDF
Modeling Study of the Global Distribution of Radiative Forcing by Dust Aerosol 被引量:5
12
作者 张华 马井会 郑有飞 《Acta meteorologica Sinica》 SCIE 2010年第5期558-570,共13页
To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, b... To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, by using an improved radiative transfer model and the global distribution of dust mass concentra-tion given by GADS (Global Aerosol Data Set). The results show that the global means of the solar forcing due to dust aerosol at the tropopause for winter and summer are -0.48 and -0.50 W m-2, respectively; the corresponding values for the longwave forcing due to dust are 0.11 and 0.09 W m-2, respectively. At the surface, the global means of the solar forcing clue to dust are -1.36 W m-2 for winter and -1.56 W m-2 for summer, whereas the corresponding values for the longwave forcing are 0.27 and 0.23 W m-2, respectively. This work points out that the absolute values of the solar forcing due to dust aerosol at both the tropopause and surface increase linearly with the cosine of solar zenith angle and surface albedo. The solar zenith angle influences both the strength and distribution of the solar forcing greatly. Clouds exert great effects on the direct radiative forcing of dust, depending on many factors including cloud cover, cloud height, cloud water path, surface albedo, solar zenith angle, etc. The effects of low clouds and middle clouds are larger than those of high clouds. The existence of clouds reduces the longwave radiative forcing at the tropopause, where the influences of low clouds are the most obvious. Therefore, the impacts of clouds should not be ignored when estimating the direct radiative forcing due to dust aerosol. 展开更多
关键词 dust aerosol radiative forcing radiative transfer model surface albedo zenith angle cloudS
原文传递
Evaluation of Cloud Vertical Structure Simulated by Recent BCC_AGCM Versions through Comparison With CALIPSO-GOCCP Data 被引量:5
13
作者 WANG Fang XIN Xiaoge +3 位作者 WANG Zaizhi CHENG Yanjie ZHANG Jie YANG Song 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第3期721-733,共13页
ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC... ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3. 展开更多
关键词 cloud vertical structure BCC_AGCM relative cloud radiative forcing
下载PDF
Analytical Studies of the Cloud Droplet Spectral Dispersion Influence on the First Indirect Aerosol Effect 被引量:5
14
作者 解小宁 刘晓东 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1313-1319,共7页
Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albed... Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albedo, and thereby exert a radiative influence on climate (the first indirect aerosol effect). In this paper, based on various relationships between cloud droplet spectral dispersion (c) and cloud droplet number concentration (Nc), we analytically derive the corresponding expressions of the cloud radiative forcing induced by changes in the cloud droplet number concentration. Further quantitative evaluation indicates that the cloud radiative forcing induced by aerosols for the different ^-Nc relationships varies from -29.1% to 25.2%, compared to the case without considering spectral dispersion (e = 0). Our results suggest that an accurate description of e - Nc relationships helps to reduce the uncertainty of the first indirect aerosol effect and advances our scientific understanding of aerosol-cloud-radiation interactions. 展开更多
关键词 spectral dispersion cloud radiative forcing the first indirect aerosol effect
下载PDF
Cloud Variations under Subtropical High Conditions 被引量:1
15
作者 冯沙 刘奇 傅云飞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第3期623-635,共13页
The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for... The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction.The results reveal that clouds mainly experience an isolated evolution in the STHs,which is designated in this study by the 1540 gpm geopotential lines at 850 hPa.In the STH domain throughout the Northern Hemisphere,the average amount of total clouds exceeds 30%.Low clouds dominate in the STH domain,contributing over 60%of total cloud amount within the Pacific subtropical high and over 40%within the Atlantic subtropical high.The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa,which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface.Furthermore,clouds present great geographical incoherence within the STH domain.In the eastern STHs,the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon,while the amount of high clouds remains stable throughout the day.Conversely,in the western STHs,the diurnal amplitude of low and middle clouds is less than three,while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening.Among the nine cloud categories,stratocumulus clouds with greater optical thickness account for the most under STH conditions,no matter their occurrence or amount,causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence. 展开更多
关键词 subtropical high cloudS cloud variation cloud radiative forcing
下载PDF
Evaluating the Impacts of Cloud Microphysical and Overlap Parameters on Simulated Clouds in Global Climate Models
16
作者 Haibo WANG Hua ZHANG +3 位作者 Bing XIE Xianwen JING Jingyi HE Yi LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2172-2187,I0023,I0024,共18页
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic... The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty. 展开更多
关键词 cloud fraction cloud microphysics scheme cloud radiative forcing vertical cloud overlap
下载PDF
Model Analysis of the Anthropogenic Aerosol Effect on Clouds over East Asia
17
作者 GAO Yi ZHANG Mei-Gen +1 位作者 LIU Xiao-Hong ZHAO Chun 《Atmospheric and Oceanic Science Letters》 2012年第1期1-7,共7页
A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emis... A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability. 展开更多
关键词 WRF-Chem aerosol indirect effect cloud properties cloud radiative forcing
下载PDF
Downward surface shortwave radiation over the subtropical Asia-Pacific region simulated by CMIP5 models
18
作者 WANG Lei-Di LV Da-Ren 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第2期130-137,共8页
The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against t... The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against two satellite observational datasets, and the possible causes for the DSSR bias of the models are further investigated by dividing the subtropical Asia-Pacific region into five areas. Most of the CMIP5 models underestimate DSSR over the oceans, but overestimate DSSR over land. Aside from the Mediterranean-West Asia (MWA) and Central Asia (CA) areas, both the biases in annual and seasonal mean DSSR are well explained by the bias in surface shortwave cloud radiative forcing (CRF), with an overestimation of the CRF effect over the subtropical North Pacific but an underestimation over other land regions. The effect of cloud plays a dominant role over the subtropical Asia-Pacific region, with relatively weaker influences over MWA and CA in boreal summer and fall. 展开更多
关键词 CMIPS surface shortwave radiation cloud radiative forcing
下载PDF
基于云辐射强迫的太阳辐射短期预报模型 被引量:1
19
作者 姚德贵 刘唯佳 +2 位作者 韩永翔 李哲 梁允 《电网与清洁能源》 CSCD 北大核心 2023年第1期85-90,99,共7页
太阳能持续性模型常被用作基准模型以评估其他模型的预报性能,但有云时的预报准确率很低。基于云相对辐射强迫(RCRF)的持续性,构建了RCRF模型。它能更好地预报有云时段的太阳辐照度。利用美国南部大平原中心站长达16年的太阳辐射资料,... 太阳能持续性模型常被用作基准模型以评估其他模型的预报性能,但有云时的预报准确率很低。基于云相对辐射强迫(RCRF)的持续性,构建了RCRF模型。它能更好地预报有云时段的太阳辐照度。利用美国南部大平原中心站长达16年的太阳辐射资料,通过一个有云个例和所有样本评估了新模型的预报性能,并与应用最广泛的Simple模型作对比。结果表明:新模型的预报性能优于Simple模型,百分比误差评分(S)评估结果显示新模型6 h预报精度相较于Simple模型最大可提高至56%,预报时效也延长了0.25~2 h不等。RCRF模型为太阳能预报模式提供了准确率更高的基准模型。 展开更多
关键词 持续性模型 太阳辐照度 云相对辐射强迫 预报准确率
下载PDF
华北地区沙尘气溶胶对云辐射强迫的影响 被引量:30
20
作者 贾璇 王文彩 +5 位作者 陈勇航 黄建平 陈建民 张华 白鸿涛 张萍 《中国环境科学》 EI CAS CSCD 北大核心 2010年第8期1009-1014,共6页
采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4... 采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4月16日、5月16日、2007年3月30日3次过程沙尘云区大气层顶云的净辐射强迫绝对值比纯云区分别减小了7.1%,17.2%和3.1%,云的冷却效应受到不同程度抑制.纯云区与沙尘云区云的光学特性参量的对比分析结果表明,绝大部分沙尘云区的云粒径、云水路径和光学厚度值均比纯云区的要小. 展开更多
关键词 沙尘气溶胶 辐射强迫 云光学特性
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部