In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
On 20 April 1994,China made its first o!cial full-function connection to the World Wide Web through a 64-kilobyte international leased line,marking the country’s formal entry into the global digital age.The year 2024...On 20 April 1994,China made its first o!cial full-function connection to the World Wide Web through a 64-kilobyte international leased line,marking the country’s formal entry into the global digital age.The year 2024 marked the 30th anniversary of the country’s entry into the internet era.展开更多
Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,...Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,the authors introduce the So Lo Mon framework,a comprehensive monitoring system developed for three large-scale landslides in the Autonomous Province of Bolzano,Italy.A web-based platform integrates various monitoring data(GNSS,topographic data,in-place inclinometer),providing a user-friendly interface for visualizing and analyzing the collected data.This facilitates the identification of trends and patterns in landslide behaviour,enabling the triggering of warnings and the implementation of appropriate mitigation measures.The So Lo Mon platform has proven to be an invaluable tool for managing the risks associated with large-scale landslides through non-structural measures and driving countermeasure works design.It serves as a centralized data repository,offering visualization and analysis tools.This information empowers decisionmakers to make informed choices regarding risk mitigation,ultimately ensuring the safety of communities and infrastructures.展开更多
The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved...The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.展开更多
With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issu...With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.展开更多
This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including th...This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including the design of experiments,surrogate models,model validation and selection,prediction,optimization,and sensitivity analysis.Moreover,it also includes an exclusive ensemble surrogate modeling technique,the extended hybrid adaptive function,which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate.To improve ease of use,DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging,dropping,and connecting algorithm blocks into a workflow instead of writing massive code.In addition,DADOS allows users to visualize the results to gain more insights into the design problems,allows multi-person collaborating on a project at the same time,and supports multi-disciplinary optimization.This paper also details the architecture and the user interface of DADOS.Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization.Since DADOS is a cloud-based system,anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware.展开更多
Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite net...Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite networks,and good communication quality of terrestrial networks.Thanks to the complementary coverage characteristics,any-time and anywhere high-speed communications can be achieved to meet the various needs of users.The scarcity of spectrum resources is a common prob-lem in both satellite and terrestrial networks.In or-der to improve resource utilization,the spectrum is shared not only within each component but also be-tween satellite beams and terrestrial cells,which intro-duces inter-component interferences.To this end,this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing(SS).An intelligent SS scheme based on radio map(RM)consisting of LSTM-based beam prediction(BP),transfer learning-based spec-trum prediction(SP)and joint non-preemptive prior-ity and preemptive priority(J-NPAP)-based propor-tional fair spectrum allocation is than proposed.The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.展开更多
An e-tag used on the freeway is a kind of passive sensors composed of sensors and radio- frequency identification (RFID) tags. The principle of the electronic toll collection system is that the sensor emits radio wa...An e-tag used on the freeway is a kind of passive sensors composed of sensors and radio- frequency identification (RFID) tags. The principle of the electronic toll collection system is that the sensor emits radio waves touching the e-tag within a certain range, the e-tag will respond to the radio waves by induction, and the sensor will read and write information of the vehicles. Although the RFID technology is popularly used in campus management systems, there is no e-tag technology application used in a campus parking system. In this paper, we use the e-tag technology on a campus parking management system based on the cloud-based construction. By this, it helps to achieve automated and standardized management of the campus parking system, enhance management efficiency, reduce the residence time of the vehicles at the entrances and exits, and improve the efficiency of vehicles parked at the same time.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy...Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.展开更多
With ever-increasing applications of IoT, and due to the heterogeneous and bursty nature of these applications, scalability has become an important research issue in building cloud-based IoT/M2M systems. This research...With ever-increasing applications of IoT, and due to the heterogeneous and bursty nature of these applications, scalability has become an important research issue in building cloud-based IoT/M2M systems. This research proposes a dynamic SDN-based network slicing mechanism to tackle the scalability problems caused by such heterogeneity and fluctuation of IoT application requirements. The proposed method can automatically create a network slice on-the-fly for each new type of IoT application and adjust the QoS characteristics of the slice dynamically according to the changing requirements </span><span style="font-family:Verdana;">of an IoT application. Validated with extensive experiments, the proposed me</span><span style="font-family:Verdana;">chanism demonstrates better platform scalability when compared to a static slicing system.展开更多
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He...1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He received his PhD from Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry in 2018.He has been focusing his research on the chemical basis and application of natural resources.He has published nearly 30 international peer reviewed papers and applied for 10 patents.展开更多
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat...In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.展开更多
Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial...Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial for linearto-rotary motion conversion.Griffis-Duffy(GD)platform is a mobile structure admitting a Bricard motion.In this paper,we present a coordinate-free approach to the design of generalized GD platforms,which consists in determining the shape and attachment of both the moving platform and the fixed base.The generalized GD platform is treated as a combination of six coaxial single-loop mechanisms under the same constraints.Owing to the inversion,hidden in the geometric structure of these single-loop mechanisms,the mapping from a line to a circle establishes the geometric transformation between the fixed base and the moving platform based on the center of inversion,and describes the shape and attachment of the generalized GD platform.Moreover,the center of inversion not only identifies the location of rotation axis,but also affects the shape of the platform mechanism.A graphical construction of generalized GD platforms using inversion,proposed in the paper,provides geometrically feasible solutions of the manipulator design for the requirement of the location of rotation axis.展开更多
With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfie...With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.展开更多
Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemi...Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemic stroke who carried out emergency intravenous thrombolysis and arterial thrombectomy in our hospital in 2021, 2022 and 2023 were selected. The time tracking mode was implemented, and the patients were recorded at each time node of the hospital and the whole-process digital management was conducted. Compared the mean DNT (Door to Needle Time) of intravenous thrombolysis in emergency stroke patients in 2021, 2022 and 2023, the total number of hospital cases within 4.5 h of onset, the total number of thrombolysis cases within 4.5 h of onset, the number of intravenous thrombolysis in 60 minutes of acute ischemic stroke, and the number of thrombolysis cases. The results show that from 2021 to 2023 our emergency stroke patients with intravenous thrombolysis average DNT shortened year by year, to the hospital within 4.5 h after the onset of the difference is statistically significant (all P < 0.05) conclusion through the application of stroke time tracking platform, is beneficial to shorten the treatment time of each link, can effectively reduce the hospital time delay, improve the rate of thrombolysis, improve the reperfusion of stroke centers in primary hospitals.展开更多
This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a...This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.展开更多
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
文摘On 20 April 1994,China made its first o!cial full-function connection to the World Wide Web through a 64-kilobyte international leased line,marking the country’s formal entry into the global digital age.The year 2024 marked the 30th anniversary of the country’s entry into the internet era.
基金funded by the So Lo Mon project“Monitoraggio a Lungo Termine di Grandi Frane basato su Sistemi Integrati di Sensori e Reti”(Longterm monitoring of large-scale landslides based on integrated systems of sensors and networks),Program EFRE-FESR 2014–2020,Project EFRE-FESR4008 South Tyrol–Person in charge:V.Mair。
文摘Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,the authors introduce the So Lo Mon framework,a comprehensive monitoring system developed for three large-scale landslides in the Autonomous Province of Bolzano,Italy.A web-based platform integrates various monitoring data(GNSS,topographic data,in-place inclinometer),providing a user-friendly interface for visualizing and analyzing the collected data.This facilitates the identification of trends and patterns in landslide behaviour,enabling the triggering of warnings and the implementation of appropriate mitigation measures.The So Lo Mon platform has proven to be an invaluable tool for managing the risks associated with large-scale landslides through non-structural measures and driving countermeasure works design.It serves as a centralized data repository,offering visualization and analysis tools.This information empowers decisionmakers to make informed choices regarding risk mitigation,ultimately ensuring the safety of communities and infrastructures.
文摘The concept of sharing of personal health data over cloud storage in a healthcare-cyber physical system has become popular in recent times as it improves access quality.The privacy of health data can only be preserved by keeping it in an encrypted form,but it affects usability and flexibility in terms of effective search.Attribute-based searchable encryption(ABSE)has proven its worth by providing fine-grained searching capabilities in the shared cloud storage.However,it is not practical to apply this scheme to the devices with limited resources and storage capacity because a typical ABSE involves serious computations.In a healthcare cloud-based cyber-physical system(CCPS),the data is often collected by resource-constraint devices;therefore,here also,we cannot directly apply ABSE schemes.In the proposed work,the inherent computational cost of the ABSE scheme is managed by executing the computationally intensive tasks of a typical ABSE scheme on the blockchain network.Thus,it makes the proposed scheme suitable for online storage and retrieval of personal health data in a typical CCPS.With the assistance of blockchain technology,the proposed scheme offers two main benefits.First,it is free from a trusted authority,which makes it genuinely decentralized and free from a single point of failure.Second,it is computationally efficient because the computational load is now distributed among the consensus nodes in the blockchain network.Specifically,the task of initializing the system,which is considered the most computationally intensive,and the task of partial search token generation,which is considered as the most frequent operation,is now the responsibility of the consensus nodes.This eliminates the need of the trusted authority and reduces the burden of data users,respectively.Further,in comparison to existing decentralized fine-grained searchable encryption schemes,the proposed scheme has achieved a significant reduction in storage and computational cost for the secret key associated with users.It has been verified both theoretically and practically in the performance analysis section.
基金financially supported by the National Natural Science Foundation of China(No.61303216,No.61272457,No.U1401251,and No.61373172)the National High Technology Research and Development Program of China(863 Program)(No.2012AA013102)National 111 Program of China B16037 and B08038
文摘With the rapid development of computer technology, cloud-based services have become a hot topic. They not only provide users with convenience, but also bring many security issues, such as data sharing and privacy issue. In this paper, we present an access control system with privilege separation based on privacy protection(PS-ACS). In the PS-ACS scheme, we divide users into private domain(PRD) and public domain(PUD) logically. In PRD, to achieve read access permission and write access permission, we adopt the Key-Aggregate Encryption(KAE) and the Improved Attribute-based Signature(IABS) respectively. In PUD, we construct a new multi-authority ciphertext policy attribute-based encryption(CP-ABE) scheme with efficient decryption to avoid the issues of single point of failure and complicated key distribution, and design an efficient attribute revocation method for it. The analysis and simulation result show that our scheme is feasible and superior to protect users' privacy in cloud-based services.
基金Supported by National Key Research and Development Program of China (Grant No.2018YFB1700704)National Natural Science Foundation of China (Grant No.52075068)。
文摘This paper presents a cloud-based data-driven design optimization system,named DADOS,to help engineers and researchers improve a design or product easily and efficiently.DADOS has nearly 30 key algorithms,including the design of experiments,surrogate models,model validation and selection,prediction,optimization,and sensitivity analysis.Moreover,it also includes an exclusive ensemble surrogate modeling technique,the extended hybrid adaptive function,which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate.To improve ease of use,DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging,dropping,and connecting algorithm blocks into a workflow instead of writing massive code.In addition,DADOS allows users to visualize the results to gain more insights into the design problems,allows multi-person collaborating on a project at the same time,and supports multi-disciplinary optimization.This paper also details the architecture and the user interface of DADOS.Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization.Since DADOS is a cloud-based system,anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware.
基金the National Nat-ural Science Foundation of China under Grants 61771163the Natural Science Foundation for Out-standing Young Scholars of Heilongjiang Province un-der Grant YQ2020F001the Science and Technol-ogy on Communication Networks Laboratory under Grants SXX19641X072 and SXX18641X028.(Cor-respondence author:Min Jia)。
文摘Cloud-based satellite and terrestrial spectrum shared networks(CB-STSSN)combines the triple advantages of efficient and flexible net-work management of heterogeneous cloud access(H-CRAN),vast coverage of satellite networks,and good communication quality of terrestrial networks.Thanks to the complementary coverage characteristics,any-time and anywhere high-speed communications can be achieved to meet the various needs of users.The scarcity of spectrum resources is a common prob-lem in both satellite and terrestrial networks.In or-der to improve resource utilization,the spectrum is shared not only within each component but also be-tween satellite beams and terrestrial cells,which intro-duces inter-component interferences.To this end,this paper first proposes an analytical framework which considers the inter-component interferences induced by spectrum sharing(SS).An intelligent SS scheme based on radio map(RM)consisting of LSTM-based beam prediction(BP),transfer learning-based spec-trum prediction(SP)and joint non-preemptive prior-ity and preemptive priority(J-NPAP)-based propor-tional fair spectrum allocation is than proposed.The simulation result shows that the spectrum utilization rate of CB-STSSN is improved and user blocking rate and waiting probability are decreased by the proposed scheme.
文摘An e-tag used on the freeway is a kind of passive sensors composed of sensors and radio- frequency identification (RFID) tags. The principle of the electronic toll collection system is that the sensor emits radio waves touching the e-tag within a certain range, the e-tag will respond to the radio waves by induction, and the sensor will read and write information of the vehicles. Although the RFID technology is popularly used in campus management systems, there is no e-tag technology application used in a campus parking system. In this paper, we use the e-tag technology on a campus parking management system based on the cloud-based construction. By this, it helps to achieve automated and standardized management of the campus parking system, enhance management efficiency, reduce the residence time of the vehicles at the entrances and exits, and improve the efficiency of vehicles parked at the same time.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金supported by the National Natural Science Foundation of China(Grant No.61309005)the Basic and Frontier Research Program of Chongqing(Grant No.cstc2014jcyj A40015)
文摘Mixed redundancy strategies are generally used in cloud-based systems,with different node switch mechanisms from traditional fault-tolerant strategies.Existing studies often concentrate on optimizing a single strategy in cloud computing environment and ignore the impact of mixed redundancy strategies.Therefore,a model is proposed to evaluate and optimize the reliability and performance of cloud-based degraded systems subject to a mixed active and cold standby redundancy strategy.In this strategy,node switching is triggered by a continual monitoring and detection mechanism when active nodes fail.To evaluate the transient availability and the expected job completion rate of systems with such kind of strategy,a continuous-time Markov chain model is built on the state transition process and a numerical method is used to solve the model.To choose the optimal redundancy for the mixed strategy under system constraints,a greedy search algorithm is proposed after sensitivity analysis.Illustrative examples were presented to explain the process of calculating the transient probability of each system state and in turn,the availability and performance of the whole system.It was shown that the near-optimal redundancy solution could be obtained using the optimizationmethod.The comparison with optimization of the traditional mixed redundancy strategy proved that the system behavior was different using different kinds of mixed strategies and less redundancy was assigned for the new type of mixed strategy under the same system constraint.
文摘With ever-increasing applications of IoT, and due to the heterogeneous and bursty nature of these applications, scalability has become an important research issue in building cloud-based IoT/M2M systems. This research proposes a dynamic SDN-based network slicing mechanism to tackle the scalability problems caused by such heterogeneity and fluctuation of IoT application requirements. The proposed method can automatically create a network slice on-the-fly for each new type of IoT application and adjust the QoS characteristics of the slice dynamically according to the changing requirements </span><span style="font-family:Verdana;">of an IoT application. Validated with extensive experiments, the proposed me</span><span style="font-family:Verdana;">chanism demonstrates better platform scalability when compared to a static slicing system.
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
基金supported by the National Natural Science Foundation of China (Grant No.32101475)Scarce and Quality Economic Forest Engineering Technology Research Center (Grant No.2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province (Grant No.JSBEM-S-202305).
文摘1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He received his PhD from Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry in 2018.He has been focusing his research on the chemical basis and application of natural resources.He has published nearly 30 international peer reviewed papers and applied for 10 patents.
基金the National Natural Science Foundation of China(No.U20A20328).
文摘In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.
基金Supported by National Natural Science Foundation of China (Grant Nos.U1813221,52075015)Personnel Startup Project of Zhejiang A&F University Scientific Research Development Foundation of China (Grant No.2024LFR015)。
文摘Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial for linearto-rotary motion conversion.Griffis-Duffy(GD)platform is a mobile structure admitting a Bricard motion.In this paper,we present a coordinate-free approach to the design of generalized GD platforms,which consists in determining the shape and attachment of both the moving platform and the fixed base.The generalized GD platform is treated as a combination of six coaxial single-loop mechanisms under the same constraints.Owing to the inversion,hidden in the geometric structure of these single-loop mechanisms,the mapping from a line to a circle establishes the geometric transformation between the fixed base and the moving platform based on the center of inversion,and describes the shape and attachment of the generalized GD platform.Moreover,the center of inversion not only identifies the location of rotation axis,but also affects the shape of the platform mechanism.A graphical construction of generalized GD platforms using inversion,proposed in the paper,provides geometrically feasible solutions of the manipulator design for the requirement of the location of rotation axis.
基金supported by the National Natural Science Foundation of China(Grant No.52271287).
文摘With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.
文摘Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemic stroke who carried out emergency intravenous thrombolysis and arterial thrombectomy in our hospital in 2021, 2022 and 2023 were selected. The time tracking mode was implemented, and the patients were recorded at each time node of the hospital and the whole-process digital management was conducted. Compared the mean DNT (Door to Needle Time) of intravenous thrombolysis in emergency stroke patients in 2021, 2022 and 2023, the total number of hospital cases within 4.5 h of onset, the total number of thrombolysis cases within 4.5 h of onset, the number of intravenous thrombolysis in 60 minutes of acute ischemic stroke, and the number of thrombolysis cases. The results show that from 2021 to 2023 our emergency stroke patients with intravenous thrombolysis average DNT shortened year by year, to the hospital within 4.5 h after the onset of the difference is statistically significant (all P < 0.05) conclusion through the application of stroke time tracking platform, is beneficial to shorten the treatment time of each link, can effectively reduce the hospital time delay, improve the rate of thrombolysis, improve the reperfusion of stroke centers in primary hospitals.
基金Project supported by the General Project of Natural Science Foundation of Hunan Province(Grant Nos.2024JJ5273 and 2023JJ50328)the Scientific Research Project of Education Department of Hunan Province(Grant Nos.22A0049 and 22B0699)。
文摘This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.