Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model deve...Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.展开更多
This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4...This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.展开更多
Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluat...Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.展开更多
The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes...The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes of AO need to be further discussed.In this paper,we use the fifth state-of-the-art reanalysis at European Centre for Medium-Range Weather Forecasts(ERA5)from 1979 to 2020 to investigate the relationship between AO and the surface springtime longwave(LW)cloud radiative forcing(CRF),summertime shortwave(SW)CRF in the Arctic region(65°-90°N).In addition,the contribution of CRF induced by AO to the sea ice change is also discussed.Results indicate that the positive(negative)anomalies of springtime LW CRF and summertime SW CRF are generally detected over the Arctic Ocean during the enhanced positive(negative)AO phase in spring and summer,respectively.Meanwhile,while the LW(SW)CRF generally has a positive correlation with AO index(AOI)in spring(summer)over the entire Arctic Ocean,this correlation is statistically significant over 70°-85°N and 120°W-90°E(i.e.,region of interest(ROI))in both seasons.Moreover,the response of CRF to the atmospheric conditions varies in spring and summer.We also find that the positive springtime(summertime)AOI tends to decrease(increase)the sea ice in September,and this phenomenon is especially prominent over the ROI.The sensitivity study among sea ice extent,CRF and AOI further reveals that decreases(increases)in September sea ice over the ROI are partly attributed to the springtime LW(summertime SW)CRF during the positive AOI.The present study provides a new pattern of AO affecting sea ice change via cloud radiative effects,which might benefit the sea ice forecast improvement.展开更多
Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Ind...Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”.展开更多
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic...The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty.展开更多
A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emis...A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.展开更多
A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented,...A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are -60.8 (40.9), 67.5 (49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of -0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models.展开更多
A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses t...A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the ant hropogenic- forcing-dominant period.展开更多
The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/ae...The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking tile percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60~N, 60~S) as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about -0.67% (-0.6 W m-2) and -0.82% (-2.0 W m-2) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 W m-2) and -2.12% (-7.8 W m 2) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by" using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures.展开更多
ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC...ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.展开更多
Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albed...Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albedo, and thereby exert a radiative influence on climate (the first indirect aerosol effect). In this paper, based on various relationships between cloud droplet spectral dispersion (c) and cloud droplet number concentration (Nc), we analytically derive the corresponding expressions of the cloud radiative forcing induced by changes in the cloud droplet number concentration. Further quantitative evaluation indicates that the cloud radiative forcing induced by aerosols for the different ^-Nc relationships varies from -29.1% to 25.2%, compared to the case without considering spectral dispersion (e = 0). Our results suggest that an accurate description of e - Nc relationships helps to reduce the uncertainty of the first indirect aerosol effect and advances our scientific understanding of aerosol-cloud-radiation interactions.展开更多
The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for...The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction.The results reveal that clouds mainly experience an isolated evolution in the STHs,which is designated in this study by the 1540 gpm geopotential lines at 850 hPa.In the STH domain throughout the Northern Hemisphere,the average amount of total clouds exceeds 30%.Low clouds dominate in the STH domain,contributing over 60%of total cloud amount within the Pacific subtropical high and over 40%within the Atlantic subtropical high.The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa,which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface.Furthermore,clouds present great geographical incoherence within the STH domain.In the eastern STHs,the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon,while the amount of high clouds remains stable throughout the day.Conversely,in the western STHs,the diurnal amplitude of low and middle clouds is less than three,while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening.Among the nine cloud categories,stratocumulus clouds with greater optical thickness account for the most under STH conditions,no matter their occurrence or amount,causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence.展开更多
The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against t...The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against two satellite observational datasets, and the possible causes for the DSSR bias of the models are further investigated by dividing the subtropical Asia-Pacific region into five areas. Most of the CMIP5 models underestimate DSSR over the oceans, but overestimate DSSR over land. Aside from the Mediterranean-West Asia (MWA) and Central Asia (CA) areas, both the biases in annual and seasonal mean DSSR are well explained by the bias in surface shortwave cloud radiative forcing (CRF), with an overestimation of the CRF effect over the subtropical North Pacific but an underestimation over other land regions. The effect of cloud plays a dominant role over the subtropical Asia-Pacific region, with relatively weaker influences over MWA and CA in boreal summer and fall.展开更多
The Grid-point Atmospheric Model of IAP LASG version 1.0(GAMIL1.0) is used to investigate the impacts of different convective schemes on the radiative energy budget.The two convective schemes are Zhang and McFarlanc...The Grid-point Atmospheric Model of IAP LASG version 1.0(GAMIL1.0) is used to investigate the impacts of different convective schemes on the radiative energy budget.The two convective schemes are Zhang and McFarlance(1995)/Hack(1994)(ZM) and Tiedtke(1989)/Nordeng(1994)(TN).Two simulations are performed:one with the ZM scheme(EX_ZM) and the other with the TN scheme(EX_TN).The results indicate that during the convective process,more water vapor consumption and temperature increment are found in the EX_ZM,especially in the lower model layer,its environment is therefore very dry.In contrast, there is a moister atmosphere in the EX_TN,which favors low cloud formation and large-scale condensation, and hence more low cloud fraction,higher cloud water mixing ratio,and deeper cloud extinction optical depth are simulated,reflecting more solar radiative flux in the EX_TN.This explains why the TN scheme underestimates the net shortwave radiative flux at the top of the atmosphere and at surface.In addition, convection influences longwave radiation,surface sensible and latent heat fluxes through changes in cloud emissivity and precipitation.展开更多
Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud...Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing(CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2(GAMIL2.0) model. When compared with the original lower troposphere stability(LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions(EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies(SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.展开更多
Using NCC/IAP T63 coupled atmosphere-ocean general circulation model (AOGCM), two 20-yr integrations were processed, and their ability to simulate cloud and radiation was analysed in detail. The results show that th...Using NCC/IAP T63 coupled atmosphere-ocean general circulation model (AOGCM), two 20-yr integrations were processed, and their ability to simulate cloud and radiation was analysed in detail. The results show that the model can simulate the basic distribution of cloud cover, and however, obvious differences still exist compared with ISCCP satellite data and ERA reanalysis data. The simulated cloud cover is less in general, especially the abnormal low values in some regions of ocean. By improving the cloud cover scheme, simulated cloud cover in the eastern Pacific and Atlantic, summer hemisphere's oceans from subtropical to mid-latitude is considerably improved. But in the tropical Indian Ocean and West Pacific the cloud cover difference is still evident, mainly due to the deficiency of high cloud simulation in these regions resulting from deep cumulus convection. In terms of the analysis on radiation and cloud radiative forcing, we find that simulation on long wave radiation is better than short wave radiation. The simulation error of short wave radiation is caused mostly by the simulation difference in short wave radiative forcing, sea ice, and snow cover, and also by not involving aerosol's effect. The simulation error of long wave radiation is mainly resulting from deficiency in simulating cloud cover and underlying surface temperature. Corresponding to improvement of cloud cover, the simulated radiation (especially short wave radiation) in eastern oceans, summer hemisphere's oceans from subtropical to mid-latitude is remarkably improved. This also brings obvious improvement to net radiation in these regions.展开更多
基金supported jointly by the National Natural Science Foundation of China (Grant Nos 40890054 and 40821092)the National Basic Research Program of China (Grant No 2010CB951904)National Key Technologies R&D Program (Grant No 2007BAC29B03)
文摘Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASGIAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nio warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nio warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nio warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.
基金supported by the CAS project under Grant No. KZCX2-YW-Q11-01the Major State Basic Research Development Program of China under Grant No. 2006CB403607the National Natural Science Foundation of China (Grant Nos.40523001, 40821092, 40875034)
文摘This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.
基金supported by the Major National Basic Research Program of China(973 Program)on Global Change(Grant No.2010CB951902)the National Natural Science Foundation of China(Grant No.41221064)the Basic Scientific Research and Operation Foundation of CAMS(Grant No.2010Z003)
文摘Cloud and its radiative effects are major sources of uncertainty that lead to simulation discrepancies in climate models. In this study, shortwave cloud radiative forcing (SWCF) over major stratus regions is evaluated for Atmospheric Models Intercomparison Project (AMIP)-type simulations of models involved in the third and fifth phases of the Coupled Models Intercomparison Project (CMIP3 and CMIP5). Over stratus regions, large deviations in both climatological mean and seasonal cycle of SWCF are found among the models. An ambient field sorted by dynamic (vertical motion) and thermodynamic (inversion strength or stability) regimes is constructed and used to measure the response of SWCF to large-scale controls. In marine boundary layer regions, despite both CMIP3 and CMIP5 models being able to capture well the center and range of occurrence frequency for the ambient field, most of the models fail to simulate the dependence of SWCF on boundary layer inversion and the insensitivity of SWCF to vertical motion. For eastern China, there are large differences even in the simulated ambient fields. Moreover, almost no model can reproduce intense SWCF in rising motion and high stability regimes. It is also found that models with a finer grid resolution have no evident superiority than their lower resolution versions. The uncertainties relating to SWCF in state-of-the-art models may limit their performance in IPCC experiments.
基金The National Natural Science Foundation of China under contract Nos 42174016 and 42076240the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources under contract No.QNHX2122the Shanghai Pujiang Program under contract No.19PJ1404300。
文摘The Arctic Oscillation(AO)has important effects on the sea ice change in terms of the dynamic and thermodynamic processes.However,while the dynamic processes of AO have been widely explored,the thermodynamic processes of AO need to be further discussed.In this paper,we use the fifth state-of-the-art reanalysis at European Centre for Medium-Range Weather Forecasts(ERA5)from 1979 to 2020 to investigate the relationship between AO and the surface springtime longwave(LW)cloud radiative forcing(CRF),summertime shortwave(SW)CRF in the Arctic region(65°-90°N).In addition,the contribution of CRF induced by AO to the sea ice change is also discussed.Results indicate that the positive(negative)anomalies of springtime LW CRF and summertime SW CRF are generally detected over the Arctic Ocean during the enhanced positive(negative)AO phase in spring and summer,respectively.Meanwhile,while the LW(SW)CRF generally has a positive correlation with AO index(AOI)in spring(summer)over the entire Arctic Ocean,this correlation is statistically significant over 70°-85°N and 120°W-90°E(i.e.,region of interest(ROI))in both seasons.Moreover,the response of CRF to the atmospheric conditions varies in spring and summer.We also find that the positive springtime(summertime)AOI tends to decrease(increase)the sea ice in September,and this phenomenon is especially prominent over the ROI.The sensitivity study among sea ice extent,CRF and AOI further reveals that decreases(increases)in September sea ice over the ROI are partly attributed to the springtime LW(summertime SW)CRF during the positive AOI.The present study provides a new pattern of AO affecting sea ice change via cloud radiative effects,which might benefit the sea ice forecast improvement.
基金the National Natural Science Foundation of China (GrantNo.40023001) Chinese Academy of Sciences under grant " Hundred Talent
文摘Based on the data from International Satellite Cloud Climatology Project (ISCCP) and Earth Radiation Budget Experiment (ERBE), the climatic cloud properties and cloud radiative forcing in the eastern China and the Indian monsoon region are compared. Although both of the Indian monsoon region and the eastern China are included in the Asian monsoon region and the seasonal cycles of rainfall are in phase, the properties of clouds and related cloud radiative forcing are significantly different. All of cloud components in the Indian region have similar phase structure of seasonal cycle. The maximum cloud fractions occur in the summer monsoon period and high clouds dominate the total cloud fraction. However, the seasonal features of clouds in the eastern China are complex. It is the mid-low clouds rather than high clouds dominating the total cloud fraction. The maximum total cloud fraction occurs in spring season. The total cloud and mid-low cloud fractions in winter season are larger than that in summer season. A unique global distinction of clouds in the eastern China is the largest cover of nimbostratus clouds. Reflecting to the cloud properties, the maximums of negative short wave, positive long wave and negative net cloud radiative forcing in the Indian monsoon region are in the summer season. In the eastern China, large negative short wave cloud radiative forcing occurs in early summer. The annual mean negative net cloud radiative forcing in the eastern China is obviously larger than that in the Indian region. Key words Cloud Radiative Forcing - Cloud Fraction Monsoon - Nimbostratus This work was jointly supported by the National Natural Science Foundation of China (Grant No.40023001) and Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate system models”.
基金supported by the National Key R&D Program of China(2017YFA0603502)(Key)National Natural Science Foundation of China(91644211)S&T Development Fund of CAMS(2021KJ004).
文摘The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-04)the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA05100502)
文摘A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB955301)Key Program of the National Natural Science Foundation of China(41430425 and 41205015)China 111 Project(B13045)
文摘A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are -60.8 (40.9), 67.5 (49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of -0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models.
基金supported by the Major State Basic Research Development Program of China(973 Program)under Grant No.2010CB951903the National Natural Science Foundation of China under Grant Nos.40890054,41205043,and 41105054
文摘A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the ant hropogenic- forcing-dominant period.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB951901)the U.S. DOE office of Biological and Environmental Research (BER) (Grant No. DE-SC0001683)+2 种基金the National Natural Science Foundation of China (Grant Nos. 40605026 and 40830103)the "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05110101)the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
文摘The Cloud Aerosol- Radiation (CAR) ensemble modeling system has recently been built to better un- derstand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking tile percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60~N, 60~S) as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about -0.67% (-0.6 W m-2) and -0.82% (-2.0 W m-2) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 W m-2) and -2.12% (-7.8 W m 2) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by" using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41275077 and 41105054)the National Basic Research Program of China (973 Program:2010CB951902)+1 种基金the China Meteorological Administration (Grant Nos.GYHY201106022 and GYHY201306048)the Sun Yat-sen University "985 Project", Phase 3
文摘ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 41105071)the CAS Strategic Priority Research Program (Grant No. XDA05110101)the National Basic Research Program of China (Grant No. 2011CB403406)
文摘Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albedo, and thereby exert a radiative influence on climate (the first indirect aerosol effect). In this paper, based on various relationships between cloud droplet spectral dispersion (c) and cloud droplet number concentration (Nc), we analytically derive the corresponding expressions of the cloud radiative forcing induced by changes in the cloud droplet number concentration. Further quantitative evaluation indicates that the cloud radiative forcing induced by aerosols for the different ^-Nc relationships varies from -29.1% to 25.2%, compared to the case without considering spectral dispersion (e = 0). Our results suggest that an accurate description of e - Nc relationships helps to reduce the uncertainty of the first indirect aerosol effect and advances our scientific understanding of aerosol-cloud-radiation interactions.
基金supported by the Special Funds for Public Welfare of China(Grant No.GYHY-QX-2007)the National Natural Science Foundation of China(Grant Nos.40730950,40675027,and 40805007).
文摘The cloud variations under subtropical high(STH) conditions during summers over a ten-year period are studied using combined data from the International Satellite Cloud Climatology Project and the National Centers for Environmental Prediction.The results reveal that clouds mainly experience an isolated evolution in the STHs,which is designated in this study by the 1540 gpm geopotential lines at 850 hPa.In the STH domain throughout the Northern Hemisphere,the average amount of total clouds exceeds 30%.Low clouds dominate in the STH domain,contributing over 60%of total cloud amount within the Pacific subtropical high and over 40%within the Atlantic subtropical high.The prevalence of low clouds in above regions is determined by the circulation pattern around 150°-180°E and 850 hPa,which suppresses both the upward development of the cloud tops and the water vapor divergences near the surface.Furthermore,clouds present great geographical incoherence within the STH domain.In the eastern STHs,the amount of middle and low clouds increases to peak in the early morning and decreases to a trough in the afternoon,while the amount of high clouds remains stable throughout the day.Conversely,in the western STHs,the diurnal amplitude of low and middle clouds is less than three,while high clouds dramatically reach the maximum in the afternoon and drop to the minimum in the evening.Among the nine cloud categories,stratocumulus clouds with greater optical thickness account for the most under STH conditions,no matter their occurrence or amount,causing more shortwave cloud radiative forcing to cool the local atmosphere and surface as a consequence.
基金supported by the Special Public Welfare Research Fund of the China Meteorological Administration[grant number GYHY201406001]the Open Research Fund Program of Plateau Atmosphere and Environmental Key Laboratory of Sichuan Province[grant number PAEKL-2016-C4]
文摘The downward surface shortwave radiation (DSSR) over the subtropical Asia-Pacific region simulated by the historical experiments of 15 CMIPS models is evaluated in this study.The simulated DSSR is compared against two satellite observational datasets, and the possible causes for the DSSR bias of the models are further investigated by dividing the subtropical Asia-Pacific region into five areas. Most of the CMIP5 models underestimate DSSR over the oceans, but overestimate DSSR over land. Aside from the Mediterranean-West Asia (MWA) and Central Asia (CA) areas, both the biases in annual and seasonal mean DSSR are well explained by the bias in surface shortwave cloud radiative forcing (CRF), with an overestimation of the CRF effect over the subtropical North Pacific but an underestimation over other land regions. The effect of cloud plays a dominant role over the subtropical Asia-Pacific region, with relatively weaker influences over MWA and CA in boreal summer and fall.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KZCX2-YW-Q11-04the China Meteorological Administration R & D Special Fund for Public Welfare(meteorology)(Grant Nos.GYHY200806007, GYHY200806006,and GYHY200906020)+1 种基金Informalization Construction Project of Chinese Academy of Sciences during the 11th Five-Year Plan Period(No.INFO-115-B01)LASG State Key Laboratory Special Fund and LASG Free Exploration Fund
文摘The Grid-point Atmospheric Model of IAP LASG version 1.0(GAMIL1.0) is used to investigate the impacts of different convective schemes on the radiative energy budget.The two convective schemes are Zhang and McFarlance(1995)/Hack(1994)(ZM) and Tiedtke(1989)/Nordeng(1994)(TN).Two simulations are performed:one with the ZM scheme(EX_ZM) and the other with the TN scheme(EX_TN).The results indicate that during the convective process,more water vapor consumption and temperature increment are found in the EX_ZM,especially in the lower model layer,its environment is therefore very dry.In contrast, there is a moister atmosphere in the EX_TN,which favors low cloud formation and large-scale condensation, and hence more low cloud fraction,higher cloud water mixing ratio,and deeper cloud extinction optical depth are simulated,reflecting more solar radiative flux in the EX_TN.This explains why the TN scheme underestimates the net shortwave radiative flux at the top of the atmosphere and at surface.In addition, convection influences longwave radiation,surface sensible and latent heat fluxes through changes in cloud emissivity and precipitation.
基金supported by the National Natural Science Foundation of China(Grant No.41125017)the National Basic Research Program of China(Grant No.2010CB951904)
文摘Based on satellite data and the estimated inversion strength(EIS) derived by Wood et al.(2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing(CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2(GAMIL2.0) model. When compared with the original lower troposphere stability(LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions(EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies(SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.
基金Supported by the Ministry of Science and Technology of China Project under Grant No.2001BA611B-01.
文摘Using NCC/IAP T63 coupled atmosphere-ocean general circulation model (AOGCM), two 20-yr integrations were processed, and their ability to simulate cloud and radiation was analysed in detail. The results show that the model can simulate the basic distribution of cloud cover, and however, obvious differences still exist compared with ISCCP satellite data and ERA reanalysis data. The simulated cloud cover is less in general, especially the abnormal low values in some regions of ocean. By improving the cloud cover scheme, simulated cloud cover in the eastern Pacific and Atlantic, summer hemisphere's oceans from subtropical to mid-latitude is considerably improved. But in the tropical Indian Ocean and West Pacific the cloud cover difference is still evident, mainly due to the deficiency of high cloud simulation in these regions resulting from deep cumulus convection. In terms of the analysis on radiation and cloud radiative forcing, we find that simulation on long wave radiation is better than short wave radiation. The simulation error of short wave radiation is caused mostly by the simulation difference in short wave radiative forcing, sea ice, and snow cover, and also by not involving aerosol's effect. The simulation error of long wave radiation is mainly resulting from deficiency in simulating cloud cover and underlying surface temperature. Corresponding to improvement of cloud cover, the simulated radiation (especially short wave radiation) in eastern oceans, summer hemisphere's oceans from subtropical to mid-latitude is remarkably improved. This also brings obvious improvement to net radiation in these regions.