A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. Al...Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. All these applications have hard delay constraints i.e. the messages should reach the target location within certain time limits. So, there must be efficient routing in VANET which meets these delay constraints. In this paper, two techniques are proposed to minimize the data traffic and delay in VANET. Firstly, a context based clustering is proposed which takes into consideration various parameters in cluster formation-location of vehicle, direction of vehicle, velocity of vehicle, interest list of vehicle [1] and destination of vehicle. Secondly, a destination based routing protocol is proposed for these context based clusters for efficient inter-cluster communication.展开更多
为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历...为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历史轨迹数据进行处理,通过提取路径安全和经济性特征学习危货运输企业的路径偏好,在此基础上,综合考虑偏好向量间的距离和方向相似性,提出了改进的K-means偏好聚类算法(improved K-means clustering algorithm based on distance and direction similarity measurement,DDM-K-means),获取了路径偏好类别;其次,依据运输任务执行的时间、天气、运距三方面信息,建立了路径上下文向量,并运用Rock聚类算法划分路径的上下文类别,与路径偏好类别共同构成路径信息;最终,基于神经协同过滤提出了危险货物道路运输路径选择优化算法(optimal route selection algorithm based on neural collaborative filtering,NCF-ORS),得到了危货运输企业对各路径类别的偏好排序,从而为企业推荐最优路径。与基线算法比较分析,结果表明危险货物道路运输个性化路径推荐方法<DDM-K-means,NCF-ORS>,平均绝对百分比误差最低。研究结果有助于挖掘车辆轨迹数据中更多的潜在信息,提升个性化路径推荐能力,可为危货运输企业的选线问题提供决策支持。展开更多
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
文摘Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. All these applications have hard delay constraints i.e. the messages should reach the target location within certain time limits. So, there must be efficient routing in VANET which meets these delay constraints. In this paper, two techniques are proposed to minimize the data traffic and delay in VANET. Firstly, a context based clustering is proposed which takes into consideration various parameters in cluster formation-location of vehicle, direction of vehicle, velocity of vehicle, interest list of vehicle [1] and destination of vehicle. Secondly, a destination based routing protocol is proposed for these context based clusters for efficient inter-cluster communication.
文摘为加强危险货物道路运输风险源头管控,以危货运输车辆行驶轨迹数据为分析对象,研究安全、经济且符合企业自身偏好的道路运输路径优化选择问题,提出了基于偏好、上下文感知的危险货物道路运输个性化路径推荐方法。首先对危货运输车辆历史轨迹数据进行处理,通过提取路径安全和经济性特征学习危货运输企业的路径偏好,在此基础上,综合考虑偏好向量间的距离和方向相似性,提出了改进的K-means偏好聚类算法(improved K-means clustering algorithm based on distance and direction similarity measurement,DDM-K-means),获取了路径偏好类别;其次,依据运输任务执行的时间、天气、运距三方面信息,建立了路径上下文向量,并运用Rock聚类算法划分路径的上下文类别,与路径偏好类别共同构成路径信息;最终,基于神经协同过滤提出了危险货物道路运输路径选择优化算法(optimal route selection algorithm based on neural collaborative filtering,NCF-ORS),得到了危货运输企业对各路径类别的偏好排序,从而为企业推荐最优路径。与基线算法比较分析,结果表明危险货物道路运输个性化路径推荐方法<DDM-K-means,NCF-ORS>,平均绝对百分比误差最低。研究结果有助于挖掘车辆轨迹数据中更多的潜在信息,提升个性化路径推荐能力,可为危货运输企业的选线问题提供决策支持。