期刊文献+
共找到867篇文章
< 1 2 44 >
每页显示 20 50 100
A Fast and Effective Multiple Kernel Clustering Method on Incomplete Data 被引量:1
1
作者 Lingyun Xiang Guohan Zhao +3 位作者 Qian Li Gwang-Jun Kim Osama Alfarraj Amr Tolba 《Computers, Materials & Continua》 SCIE EI 2021年第4期267-284,共18页
Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled.However,multiple kernel clustering for incomplete da... Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled.However,multiple kernel clustering for incomplete data is a critical yet challenging task.Although the existing absent multiple kernel clustering methods have achieved remarkable performance on this task,they may fail when data has a high value-missing rate,and they may easily fall into a local optimum.To address these problems,in this paper,we propose an absent multiple kernel clustering(AMKC)method on incomplete data.The AMKC method rst clusters the initialized incomplete data.Then,it constructs a new multiple-kernel-based data space,referred to as K-space,from multiple sources to learn kernel combination coefcients.Finally,it seamlessly integrates an incomplete-kernel-imputation objective,a multiple-kernel-learning objective,and a kernel-clustering objective in order to achieve absent multiple kernel clustering.The three stages in this process are carried out simultaneously until the convergence condition is met.Experiments on six datasets with various characteristics demonstrate that the kernel imputation and clustering performance of the proposed method is signicantly better than state-of-the-art competitors.Meanwhile,the proposed method gains fast convergence speed. 展开更多
关键词 Multiple kernel clustering absent-kernel imputation incomplete data kernel k-means clustering
下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
2
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
下载PDF
Scaling up Kernel Grower Clustering Method for Large Data Sets via Core-sets 被引量:2
3
作者 CHANG Liang DENG Xiao-Ming +1 位作者 ZHENG Sui-Wu WANG Yong-Qing 《自动化学报》 EI CSCD 北大核心 2008年第3期376-382,共7页
核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这... 核栽培者是聚类最近 Camastra 和 Verri 建议的方法的一个新奇的核。它证明为各种各样的数据的好性能关于流行聚类的算法有利地设定并且比较。然而,方法的主要缺点是在处理大数据集合的弱可伸缩能力,它极大地限制它的应用程序。在这份报纸,我们用核心集合建议一个可伸缩起来的核栽培者方法,它是比为聚类的大数据的原来的方法显著地快的。同时,它能处理很大的数据集合。象合成数据集合一样的基准数据集合的数字实验显示出建议方法的效率。方法也被用于真实图象分割说明它的性能。 展开更多
关键词 大型数据集 图象分割 模式识别 磁心配置 核聚类
下载PDF
DATA PREPROCESSING AND RE KERNEL CLUSTERING FOR LETTER
4
作者 Zhu Changming Gao Daqi 《Journal of Electronics(China)》 2014年第6期552-564,共13页
Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing ... Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy. 展开更多
关键词 Data preprocessing kernel clustering kernel Nearest Neighbor(KNN) Re kernel clustering
下载PDF
Kernel Generalized Noise Clustering Algorithm
5
作者 武小红 周建江 《Journal of Southwest Jiaotong University(English Edition)》 2007年第2期96-101,共6页
To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and ... To deal with the nonlinear separable problem, the generalized noise clustering (GNC) algorithm is extended to a kernel generalized noise clustering (KGNC) model. Different from the fuzzy c-means (FCM) model and the GNC model which are based on Euclidean distance, the presented model is based on kernel-induced distance by using kernel method. By kernel method the input data are nonlinearly and implicitly mapped into a high-dimensional feature space, where the nonlinear pattern appears linear and the GNC algorithm is performed. It is unnecessary to calculate in high-dimensional feature space because the kernel function can do it just in input space. The effectiveness of the proposed algorithm is verified by experiments on three data sets. It is concluded that the KGNC algorithm has better clustering accuracy than FCM and GNC in clustering data sets containing noisy data. 展开更多
关键词 Fuzzy clustering Pattern recognition kernel methods Noise clustering kernel generalized noise clustering
下载PDF
Multiple Kernel Clustering Based on Self-Weighted Local Kernel Alignment
6
作者 Chuanli Wang En Zhu +3 位作者 Xinwang Liu Jiaohua Qin Jianping Yin Kaikai Zhao 《Computers, Materials & Continua》 SCIE EI 2019年第7期409-421,共13页
Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assum... Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm. 展开更多
关键词 Multiple kernel clustering kernel alignment local kernel alignment self-weighted
下载PDF
An Improved Kernel K-Mean Cluster Method and Its Application in Fault Diagnosis of Roller Bearing 被引量:2
7
作者 Ling-Li Jiang Yu-Xiang Cao +1 位作者 Hua-Kui Yin Kong-Shu Deng 《Engineering(科研)》 2013年第1期44-49,共6页
For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the o... For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the original space discretionarily in the existing methods, this paper proposes a new method for ensuring the clustering center that virtual clustering centers are defined in the feature space by the original classification as the initial cluster centers and the iteration clustering centers are ensured by the further virtual classification. The improved method is used for fault diagnosis of roller bearing that achieves a good cluster and diagnosis result, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 IMPROVED kernel K-Mean cluster FAULT Diagnosis ROLLER BEARING
下载PDF
Modified possibilistic clustering model based on kernel methods
8
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
下载PDF
A Kernel Clustering Algorithm for Fast Training of Support Vector Machines
9
作者 刘笑嶂 冯国灿 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期53-56,共4页
A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickl... A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickly produce balanced clusters of similar sizes in the kernel feature space,which makes it efficient and effective for reducing training samples.Theoretical analysis and experimental results on three UCI real data benchmarks both show that,with very short sampling time,the proposed algorithm dramatically accelerates SVM sampling and training while maintaining high test accuracy. 展开更多
关键词 support vector machines(SVMs) sample reduction topdown hierarchical clustering kernel bisecting k-means
下载PDF
Face Recognition Using Fuzzy Clustering and Kernel Least Square
10
作者 Essam Al Daoud 《Journal of Computer and Communications》 2015年第3期1-7,共7页
Over the last fifteen years, face recognition has become a popular area of research in image analysis and one of the most successful applications of machine learning and understanding. To enhance the classification ra... Over the last fifteen years, face recognition has become a popular area of research in image analysis and one of the most successful applications of machine learning and understanding. To enhance the classification rate of the image recognition, several techniques are introduced, modified and combined. The suggested model extracts the features using Fourier-Gabor filter, selects the best features using signal to noise ratio, deletes or modifies anomalous images using fuzzy c-mean clustering, uses kernel least square and optimizes it by using wild dog pack optimization. To compare the suggested method with the previous methods, four datasets are used. The results indicate that the suggested methods without fuzzy clustering and with fuzzy clustering outperform state- of-art methods for all datasets. 展开更多
关键词 FACE Recognition Fuzzy clustering kernel Least SQUARE GABOR FILTERS
下载PDF
Kernel- based Maximum Entropy Clustering
11
作者 JIANG Wei QU Jiao LI Benxi 《现代电子技术》 2007年第2期152-153,156,共3页
下载PDF
基于Kernel K-means的负荷曲线聚类 被引量:30
12
作者 赵文清 龚亚强 《电力自动化设备》 EI CSCD 北大核心 2016年第6期203-207,共5页
电力负荷曲线聚类是配用电系统的基础,对负荷管理具有重大意义。采用基于核方法的聚类算法提高负荷曲线聚类的准确性,通过点积的方式构造核矩阵,再将数据映射到高维空间中进行聚类,进而加大数据的可分性。同时,针对核矩阵的规模大、计... 电力负荷曲线聚类是配用电系统的基础,对负荷管理具有重大意义。采用基于核方法的聚类算法提高负荷曲线聚类的准确性,通过点积的方式构造核矩阵,再将数据映射到高维空间中进行聚类,进而加大数据的可分性。同时,针对核矩阵的规模大、计算复杂的问题,提出使用核主成分与缩减矩阵规模对该方法进行优化。实验过程中采用美国能源部开发能源信息网站提供的负荷数据进行聚类,并以Davies-Bouldin聚类有效性指标评估效果。结果表明该方法具有较好的划分能力,可以提高负荷曲线聚类的准确性。 展开更多
关键词 负荷曲线 聚类算法 核矩阵 核主成分分析 削减矩阵
下载PDF
A SPARSE PROJECTION CLUSTERING ALGORITHM 被引量:4
13
作者 Xie Zongbo Feng Jiuchao 《Journal of Electronics(China)》 2009年第4期549-551,共3页
A clustering algorithm based on Sparse Projection (SP), called Sparse Projection Clus- tering (SPC), is proposed in this letter. The basic idea is applying SP to project the observed data onto a high-dimensional spars... A clustering algorithm based on Sparse Projection (SP), called Sparse Projection Clus- tering (SPC), is proposed in this letter. The basic idea is applying SP to project the observed data onto a high-dimensional sparse space, which is a nonlinear mapping with an explicit form and the K-means clustering algorithm can be therefore used to explore the inherent data patterns in the new space. The proposed algorithm is applied to cluster a complete artificial dataset and an incomplete real dataset. In comparison with the kernel K-means clustering algorithm, the proposed algorithm is more efficient. 展开更多
关键词 Sparse Projection clustering (SPC) K-means clustering kernel K-means clustering
下载PDF
FH Sequences Selected Based on Clustering Analysis 被引量:1
14
作者 Huabin Yang Deyu Wang 《通讯和计算机(中英文版)》 2010年第8期58-61,共4页
关键词 聚类分析算法 跳频序列 基础 空间结构特征 无线电网络 空间映射 跳频通信 碰撞概率
下载PDF
Modelling method with missing values based on clustering and support vector regression 被引量:2
15
作者 Ling Wang Dongmei Fu Qing Li Zhichun Mu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期142-147,共6页
Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real proc... Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm. 展开更多
关键词 MODELING missing value K-means with soft constraints clustering missing value insensitive kernel.
下载PDF
基于匝道合流数据的自动驾驶汽车安全性测试评价方法 被引量:1
16
作者 李文礼 李超 +2 位作者 李中峰 易帆 李安 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期84-91,共8页
针对自动驾驶汽车测试场景不明确、评价模型主观性强等问题,研究了高速匝道汇入场景下的典型测试场景提取方法和自动驾驶汽车匝道汇入安全性客观评价方法。深入分析了匝道汇入功能场景下的逻辑场景要素,对自然驾驶数据中的自车速度、车... 针对自动驾驶汽车测试场景不明确、评价模型主观性强等问题,研究了高速匝道汇入场景下的典型测试场景提取方法和自动驾驶汽车匝道汇入安全性客观评价方法。深入分析了匝道汇入功能场景下的逻辑场景要素,对自然驾驶数据中的自车速度、车间距离、前车车速等逻辑场景要素进行聚类,得到两类典型的匝道汇入测试场景用于自动驾驶汽车的仿真测试。构建多层次自动驾驶汽车评价体系,引入基于自然驾驶数据的核密度估计模型来获取指标最优阈值,建立以最优阈值为参考序列、以层次分析法(AHP)和客观赋权法(CRITIC)为权重输入的灰色关联理评价模型,对自动驾驶汽车在汇入过程中的安全性进行客观评价。评价结果表明:基于核密度估计的灰色关联理论模型评价结果与主观模糊综合分析模型的评价结果相似率达98.01%,验证了客观模型的有效性。 展开更多
关键词 车辆工程 测试评价 客观评价模型 聚类分析 核密度估计
下载PDF
Multivariate Modality Inference Using Gaussian Kernel
17
作者 Yansong Cheng Surajit Ray 《Open Journal of Statistics》 2014年第5期419-434,共16页
The number of modes (also known as modality) of a kernel density estimator (KDE) draws lots of interests and is important in practice. In this paper, we develop an inference framework on the modality of a KDE under mu... The number of modes (also known as modality) of a kernel density estimator (KDE) draws lots of interests and is important in practice. In this paper, we develop an inference framework on the modality of a KDE under multivariate setting using Gaussian kernel. We applied the modal clustering method proposed by [1] for mode hunting. A test statistic and its asymptotic distribution are derived to assess the significance of each mode. The inference procedure is applied on both simulated and real data sets. 展开更多
关键词 MODALITY kernel DENSITY ESTIMATE Mode clustering
下载PDF
Parallel and Hierarchical Mode Association Clustering with an R Package <i>Modalclust</i>
18
作者 Yansong Cheng Surajit Ray 《Open Journal of Statistics》 2014年第10期826-836,共11页
Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) along with its parallel implementation over several processors. Modal clustering techniques are especially designed to efficien... Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) along with its parallel implementation over several processors. Modal clustering techniques are especially designed to efficiently extract clusters in high dimensions with arbitrary density shapes. Further, clustering is performed over several resolutions and the results are summarized as a hierarchical tree, thus providing a model based multi resolution cluster analysis. Finally we implement a novel parallel implementation of HMAC which performs the clustering job over several processors thereby dramatically increasing the speed of clustering procedure especially for large data sets. This package also provides a number of functions for visualizing clusters in high dimensions, which can also be used with other clustering softwares. 展开更多
关键词 MODALITY kernel Density Estimate MODE clusterING
下载PDF
基于核聚类的砂岩图像孔隙分割方法
19
作者 王梅 宋晓晖 +2 位作者 王治国 韩非 于源泽 《石油物探》 CSCD 北大核心 2024年第5期1051-1060,共10页
砂岩孔隙识别是研究孔隙结构的一个重要步骤,采用通用的图像分割算法不易得到理想的图像孔隙分割效果,为此提出了一种使用EfficientNetV2-S模型和核K-Means聚类技术对孔隙进行分割的方法。首先,获得砂岩图像的超像素集合,使用超像素方... 砂岩孔隙识别是研究孔隙结构的一个重要步骤,采用通用的图像分割算法不易得到理想的图像孔隙分割效果,为此提出了一种使用EfficientNetV2-S模型和核K-Means聚类技术对孔隙进行分割的方法。首先,获得砂岩图像的超像素集合,使用超像素方法预分割输入的致密砂岩图像,构建带标签的孔隙与非孔隙图像库;然后,应用EfficientNetV2-S模型提取砂岩图像的孔隙和非孔隙的语义特征,并结合迁移学习的方法,使用有限的砂岩图像的孔隙和非孔隙样本进行EfficientNetV2-S模型参数学习;最后,设计了一种基于K-Means聚类的区域合并方法——NTK-KCoP方法,根据超像素的语义特征、灰度特征和边缘特征构建目标函数,再由聚类结果合并超像素得到完整的孔隙区域。砂岩CT图像的实验结果验证了所提出的孔隙分割方法的适用性和有效性。 展开更多
关键词 砂岩CT图像 图像分割 超像素 EfficientNetV2-S 核聚类
下载PDF
Comparison of Kernel Entropy Component Analysis with Several Dimensionality Reduction Methods
20
作者 马西沛 张蕾 孙以泽 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期577-582,共6页
Dimensionality reduction techniques play an important role in data mining. Kernel entropy component analysis( KECA) is a newly developed method for data transformation and dimensionality reduction. This paper conducte... Dimensionality reduction techniques play an important role in data mining. Kernel entropy component analysis( KECA) is a newly developed method for data transformation and dimensionality reduction. This paper conducted a comparative study of KECA with other five dimensionality reduction methods,principal component analysis( PCA),kernel PCA( KPCA),locally linear embedding( LLE),laplacian eigenmaps( LAE) and diffusion maps( DM). Three quality assessment criteria, local continuity meta-criterion( LCMC),trustworthiness and continuity measure(T&C),and mean relative rank error( MRRE) are applied as direct performance indexes to assess those dimensionality reduction methods. Moreover,the clustering accuracy is used as an indirect performance index to evaluate the quality of the representative data gotten by those methods. The comparisons are performed on six datasets and the results are analyzed by Friedman test with the corresponding post-hoc tests. The results indicate that KECA shows an excellent performance in both quality assessment criteria and clustering accuracy assessing. 展开更多
关键词 dimensionality reduction kernel entropy component analysis(KECA) kernel principal component analysis(KPCA) clusterING
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部