To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ...To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models.展开更多
Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspect...Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.展开更多
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ...Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of ...Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of cluster analysis and factor analysis, and the cleaning potential of the hazardous elements relatively enriched in the coals was discussed by analyzing six samples of the cleaned coal from the coal-washing plants and coal cleaning simulation experiments. The results shows that the elements Br and Ba show a strong affinity to the organic matter, Cs, Cd, Pb, Zn and Hg partly to the organic matter, and the other trace elements are mainly associated with the mineral matter. Cs, Mo, P, Pb, Zn and S have positive correlations with the two principal factors, reflecting the complexity of their modes of occurrence. Some elements that were thought to show a faint relationship (Be with S and Sb with carbonates) in other rocks are found to have a strong interrelation in the coals. Clay minerals (mainly kaolinite) dominate in the coals, and Ta, Th, Ti, Sc, REE, Hf, U, Se, W, V, Nb, Mo, Al, P, Cr, Pb and Zn are distributed mostly in kaolinite, while K, Rb, Cs, and Na have much to do with illite. Conventional cleaning can reduce the concentrations of most hazardous elements in various degrees. The hazardous elements S, As, Sb, Se, Mo, Pb, Cd and Hg relatively enriched in some coals from the area studied have a relatively high potential of environmental risks. However, by physical coal cleaning processes, more than 60% of As and Hg were removed, showing a high degree of removal, more than 30% of Sb, as well as S, Pb and Cd partly associated with the inorganic matter were removed. Se and Mo showing a relatively low degree of removal could be further removed by deep crushing of the coal during physical cleaning processes, and the concentrations of S, Pb, Cd and Hg with a partial association with the organic matter could be decreased in such ways as the coal blending. Cluster analysis together with factor analysis is a rapid and effective way to deduce the mode of occurrence of an element from bulk samples, and the removability data of most hazardous elements are basically consistent with their modes of occurrence suggested, which indicates that the statistical analysis could predict the cleaning potential of hazardous elements during the physical coal cleaning.展开更多
Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) along with its parallel implementation over several processors. Modal clustering techniques are especially designed to efficien...Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) along with its parallel implementation over several processors. Modal clustering techniques are especially designed to efficiently extract clusters in high dimensions with arbitrary density shapes. Further, clustering is performed over several resolutions and the results are summarized as a hierarchical tree, thus providing a model based multi resolution cluster analysis. Finally we implement a novel parallel implementation of HMAC which performs the clustering job over several processors thereby dramatically increasing the speed of clustering procedure especially for large data sets. This package also provides a number of functions for visualizing clusters in high dimensions, which can also be used with other clustering softwares.展开更多
The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the ab...The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.展开更多
Electric vehicle, as a clean energy industry, is an important branch. Electric vehicles not only are the energy of the electric user, but also can be used as mobile and distributed energy storage unit to the grid. As ...Electric vehicle, as a clean energy industry, is an important branch. Electric vehicles not only are the energy of the electric user, but also can be used as mobile and distributed energy storage unit to the grid. As a precondition of safety operation for power grid, studies of EVs’ charging load characteristics is also the theoretical basis of intelligent scheduling EVs charging orderly. This paper assesses the future of the electric vehicles development prospects, and secondly establishes a charging model of a single EV. Then, considering stochastic distribution of the initial state-of-charge (SOC0) and the arriving time of the vehicles, a cluster model of the charging station is proposed. Meanwhile, the paper from the types and charging mode of electric vehicles analyzes the behavior of EV. Finally, an example simulation is validated.展开更多
Currently, the country promotes with great effort the university should the application specific education, speeds up constructing to take getting employed as the guidance modern vocational education system. In order ...Currently, the country promotes with great effort the university should the application specific education, speeds up constructing to take getting employed as the guidance modern vocational education system. In order to strengthen the vocational skill ability of student and enhance the employment competitiveness, this article proposes enterprise application-based project colony educational model. In the teaching process, the school subject knowledge education and business skills needs of the enterprise integration, the use of enterprise program teaching, so that students can not only receive professional knowledge of the system education, but also the ability of professional application of formal training and training, after graduation the students can quickly adapt to the work of the business requirements, to achieve the purpose of application-oriented teaching.展开更多
To analysis the early failures of machining centers,the failure mode effect and criticality analysis( FMECA) method was used. Based on the failure data collected from production lines in test run,all the failure modes...To analysis the early failures of machining centers,the failure mode effect and criticality analysis( FMECA) method was used. Based on the failure data collected from production lines in test run,all the failure modes of machining centers were summarized and criticality of all subsystems is figured out. And the process of FMECA was improved. The most critical subsystem was manipulator subsystem. The most critical failure mode was impacted manipulator. Reasons and effect of some important failure modes were analyzed. And some suggestions to solve failures were given.展开更多
A novel current mode active-only universal filter using four dual current output Operational Transconductance Amplifiers (OTAs) and three Operational Amplifiers (OAs) is presented. The circuit can realize low pass and...A novel current mode active-only universal filter using four dual current output Operational Transconductance Amplifiers (OTAs) and three Operational Amplifiers (OAs) is presented. The circuit can realize low pass and high pass filter characteristics by choosing the suitable current output branches. The filter performance factors natural frequency (ω0), bandwidth , quality factor Q and transconductance gain gm are electronically tunable. The proposed circuit has very low sensitivities with respect to circuit active elements. From sensitivity analysis, it has been clearly shown that the proposed circuit has very low sensitivities with respect to the circuit active elements. The gain roll-off of high pass and low pass configuration is 18 dB/oc- tave. The proposed circuit facilitates integrability, programmability and ease of implementation.展开更多
基金This paper is supported by State Grid Gansu Electric Power Company Science and Technology Project(20220515003).
文摘To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models.
基金National Natural Science Foundation of China(Grant No.62071433)National Key R&D Program of China(Grant No.2022YFC3005002)。
文摘Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.
基金Supported by National Key R&D Projects(Grant No.2018YFB0905500)National Natural Science Foundation of China(Grant No.51875498)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant Nos.E2018203439,E2018203339,F2016203496)Key Scientific Research Projects Plan of Henan Higher Education Institutions(Grant No.19B460001)
文摘Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
文摘Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of cluster analysis and factor analysis, and the cleaning potential of the hazardous elements relatively enriched in the coals was discussed by analyzing six samples of the cleaned coal from the coal-washing plants and coal cleaning simulation experiments. The results shows that the elements Br and Ba show a strong affinity to the organic matter, Cs, Cd, Pb, Zn and Hg partly to the organic matter, and the other trace elements are mainly associated with the mineral matter. Cs, Mo, P, Pb, Zn and S have positive correlations with the two principal factors, reflecting the complexity of their modes of occurrence. Some elements that were thought to show a faint relationship (Be with S and Sb with carbonates) in other rocks are found to have a strong interrelation in the coals. Clay minerals (mainly kaolinite) dominate in the coals, and Ta, Th, Ti, Sc, REE, Hf, U, Se, W, V, Nb, Mo, Al, P, Cr, Pb and Zn are distributed mostly in kaolinite, while K, Rb, Cs, and Na have much to do with illite. Conventional cleaning can reduce the concentrations of most hazardous elements in various degrees. The hazardous elements S, As, Sb, Se, Mo, Pb, Cd and Hg relatively enriched in some coals from the area studied have a relatively high potential of environmental risks. However, by physical coal cleaning processes, more than 60% of As and Hg were removed, showing a high degree of removal, more than 30% of Sb, as well as S, Pb and Cd partly associated with the inorganic matter were removed. Se and Mo showing a relatively low degree of removal could be further removed by deep crushing of the coal during physical cleaning processes, and the concentrations of S, Pb, Cd and Hg with a partial association with the organic matter could be decreased in such ways as the coal blending. Cluster analysis together with factor analysis is a rapid and effective way to deduce the mode of occurrence of an element from bulk samples, and the removability data of most hazardous elements are basically consistent with their modes of occurrence suggested, which indicates that the statistical analysis could predict the cleaning potential of hazardous elements during the physical coal cleaning.
文摘Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) along with its parallel implementation over several processors. Modal clustering techniques are especially designed to efficiently extract clusters in high dimensions with arbitrary density shapes. Further, clustering is performed over several resolutions and the results are summarized as a hierarchical tree, thus providing a model based multi resolution cluster analysis. Finally we implement a novel parallel implementation of HMAC which performs the clustering job over several processors thereby dramatically increasing the speed of clustering procedure especially for large data sets. This package also provides a number of functions for visualizing clusters in high dimensions, which can also be used with other clustering softwares.
文摘The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.
文摘Electric vehicle, as a clean energy industry, is an important branch. Electric vehicles not only are the energy of the electric user, but also can be used as mobile and distributed energy storage unit to the grid. As a precondition of safety operation for power grid, studies of EVs’ charging load characteristics is also the theoretical basis of intelligent scheduling EVs charging orderly. This paper assesses the future of the electric vehicles development prospects, and secondly establishes a charging model of a single EV. Then, considering stochastic distribution of the initial state-of-charge (SOC0) and the arriving time of the vehicles, a cluster model of the charging station is proposed. Meanwhile, the paper from the types and charging mode of electric vehicles analyzes the behavior of EV. Finally, an example simulation is validated.
文摘Currently, the country promotes with great effort the university should the application specific education, speeds up constructing to take getting employed as the guidance modern vocational education system. In order to strengthen the vocational skill ability of student and enhance the employment competitiveness, this article proposes enterprise application-based project colony educational model. In the teaching process, the school subject knowledge education and business skills needs of the enterprise integration, the use of enterprise program teaching, so that students can not only receive professional knowledge of the system education, but also the ability of professional application of formal training and training, after graduation the students can quickly adapt to the work of the business requirements, to achieve the purpose of application-oriented teaching.
基金National Science and Technology Major Project of China(No.2013ZX04012071)
文摘To analysis the early failures of machining centers,the failure mode effect and criticality analysis( FMECA) method was used. Based on the failure data collected from production lines in test run,all the failure modes of machining centers were summarized and criticality of all subsystems is figured out. And the process of FMECA was improved. The most critical subsystem was manipulator subsystem. The most critical failure mode was impacted manipulator. Reasons and effect of some important failure modes were analyzed. And some suggestions to solve failures were given.
文摘A novel current mode active-only universal filter using four dual current output Operational Transconductance Amplifiers (OTAs) and three Operational Amplifiers (OAs) is presented. The circuit can realize low pass and high pass filter characteristics by choosing the suitable current output branches. The filter performance factors natural frequency (ω0), bandwidth , quality factor Q and transconductance gain gm are electronically tunable. The proposed circuit has very low sensitivities with respect to circuit active elements. From sensitivity analysis, it has been clearly shown that the proposed circuit has very low sensitivities with respect to the circuit active elements. The gain roll-off of high pass and low pass configuration is 18 dB/oc- tave. The proposed circuit facilitates integrability, programmability and ease of implementation.