A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed cry...A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.展开更多
Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The...Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The fractal dimensions of granule distribution and corpuscle superficial area are quite conformed with those of measurement. Conclusion The texture parameters of engine particle cluster can be obtained precisely by use of fractal theory.展开更多
Two-dimensional unsteady cocurrent upward gas-solid flows in the vertical channel are simulated and the mechanisms of particles accumulation are analyzed according to the simulation results. The gaseous turbulent flow...Two-dimensional unsteady cocurrent upward gas-solid flows in the vertical channel are simulated and the mechanisms of particles accumulation are analyzed according to the simulation results. The gaseous turbulent flow is simulated using the large eddy simulation (LES) method and the solid phase is treated using the Lagrangian approach, and the motion of the gas and particles are coupled. The formation of clusters and the accumulation of particles near the wall in dense gas-solid flows are demonstrated even if the particle-particle collisions were ignored. It is found that a cluster grows up by capturing the particles in the dilute phase due to its lower vertical velocity. By this way the small size clusters can evolve to large-scale clusters. Due to the interaction of gas and particles, the large-scale vortices appear in the channel and the boundary layer separates from the wall, which results in very high particle concentration in the near wall region and a very large-scale cluster formed near the separation point.展开更多
The complex physical properties of supercritical water(SCW)make the heat transfer characteristics of particles within a particle cluster complicated.The heat transfer characteristics of single particle within a partic...The complex physical properties of supercritical water(SCW)make the heat transfer characteristics of particles within a particle cluster complicated.The heat transfer characteristics of single particle within a particle cluster in SCW,influenced by surrounding particles,have not been effectively explored.The numerical simulations were conducted to investigate the heat transfer characteristics of particle clusters in SCW under different conditions.The results were compared and analyzed with those from constant property flow.It was found that Reynolds number(Re)and the void fraction of particle cluster have no special effects on the variation trends of Nusselt number(Nu)for the focused particle.However,the particle temperature had a significant effect on the variation trends of Nu.The effect of Re on the heat transfer rate exponent(η)of the focused particle can be divided into two zones:a significant effect zone and a non-significant effect zone.The effect of void fraction onηin the non-significant effect zone was minimal.Within the non-significant effect zone,ηdecreased with the increasing particle temperature.In the significant effect zone,the variation trends ofηbecame more complex.The fundamental reason for this series of phenomena is the changes in distribution of physical properties.A model forηwas developed for the non-significant effect zone.This model can filter out the effects of Re and certain particle cluster spatial configurations,and it demonstrates good predictive performance.展开更多
This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improv...This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately.展开更多
Collective motion of active particles with polar alignment is investigated on a sphere.We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swar...Collective motion of active particles with polar alignment is investigated on a sphere.We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion.In the model,we added a polar alignment strength,along with Gaussian curvature,affecting particles swarm motion.We find that when the force exceeds a certain limit,the order parameter will decrease with the increase of the force.Combined with our definition of order parameter and observation of the model,the reason is that particles begin to move side by side under the influence of polar forces.In addition,the effects of velocity,rotational diffusion coefficient,and packing fraction on particle swarm motion are discussed.It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles,while the velocity has little influence on the clustering motion of particles.展开更多
Here we report experiments on particle cluster settling at high Reynolds number in quiescent liquid contained in a vessel.The particles were observed to spread at the vessel bottom surface in a near-circular annular s...Here we report experiments on particle cluster settling at high Reynolds number in quiescent liquid contained in a vessel.The particles were observed to spread at the vessel bottom surface in a near-circular annular shape after settling irrespective of the shape of the vessel cross-section and particle shape,size,and types.Effect of different parameters such as mass,type and aspect ratio of the particles,height,and viscosity of liquid was investigated on spreading behaviour.Formation of the hemispherical bottom cap of the cluster that bounces upon hitting the vessel bottom surface was found to be responsible for the final circular annular shape of the settled structure.Particle leakage from the cluster was seen in the form of a tail.In the liquid having viscosity beyond 100 cP,cluster breakage was observed that resulted in hindered settling and asymmetric shapes of finally settled particles.The observations are useful to understand the overall area over which settling and spreading of such clusters can be observed.展开更多
Particle clustering is an important dynamic phenomenon in circulating-fluidized-bed(CFBs)systems,and has been suggested as a key contributing factor to the non-uniform hydrodynamics of CFBs.Studies show that particle ...Particle clustering is an important dynamic phenomenon in circulating-fluidized-bed(CFBs)systems,and has been suggested as a key contributing factor to the non-uniform hydrodynamics of CFBs.Studies show that particle clusters can be affected by solids flux,in terms of frequency,duration,and solids holdup.To understand the characteristics of particle clusters under high-solids-flux conditions,experimental and modeling studies in high-solids-flux gas-solids CFBs were reviewed and summarized.Optical and electrical measurements and imaging methods were used to monitor the particle-clustering phenomenon in CFBs.Particles were found to cluster in high-flux CFBs,and were characterized by a denser cluster-solids holdup and a shorter time fraction,which was different from the behavior in low-flux CFBs.Particle properties affected particle clustering in high-flux CFBs significantly.In modeling work,Eulerian-Eulerian and Eulerian-Lagrangian methods were used to study the particle-cluster characteristics.Good results can be obtained by using the Eulerian-Eulerian method to simulate the CFB system,especially the high-flux CFBs,and by considering the effects of particle clusters.The Eulerian-Lagrangian method is used to obtain detailed cluster characteristics.Because of limits in computing power,no obvious results exist to model particle clusters under high-solids-flux conditions.Because high-solids-flux conditions are used extensively in industrial applications,further experimental and numerical investigations on the clustering behavior in HF/DCFBs are required.展开更多
A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using L...A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using Lagrangian trajectory method. The flow Reynolds number is 180 based on the friction velocity and half-width of the channel. The particle is lycopodium with St=0.93 which may well follow the fluid phase. The mean and fluctuating velocities of both two phases are obtained, which are in good agreement with previous data. The strongest accumulations of particles in low-speed streak structures are observed at y~=l 1.3. Moreover, once particles are captured in low-speed streaks, most of them will reside there for a long period. Particles clustered in low-speed streaks obtain smaller instantaneous wall-normal and spanwise velocities than those out of there, which induce a larger particle flux into low-speed streaks than that out of there. The study is important for understanding particle dispersion mechanisms in gas-particle turbulent channel flows.展开更多
The influence of particle size on the effective permittivity of a particle-gas mixture in the presence of particle clusters was studied using numerical analysis involving the three-dimensional finite element method. T...The influence of particle size on the effective permittivity of a particle-gas mixture in the presence of particle clusters was studied using numerical analysis involving the three-dimensional finite element method. The effective permittivity of the mixture was obtained by calculating the electrostatic energy generated in the computation domain, Numerical results show that for fixed volume fraction of particles in the mixture, the effective permittivity of the mixture increases with decreasing particle size, Static experiments were carried out by using a differential capacitance sensor with parallel plates. The variation of the effective permittivity with particle size is shown by experimental data to agree with the numerical results. The methodology described and the results obtained in this paper may be used to help modify the measurement of particles volume fraction in the presence of particle clusters when a capacitance sensor is used.展开更多
To understand the pollution characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China, total suspended particulate (TSP) and PMI0 samples were collected in cities of C...To understand the pollution characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China, total suspended particulate (TSP) and PMI0 samples were collected in cities of Changsha, Zhuzhou and Xiangtan from December 2011 to January 2012, and heavy metals of Cd, Pb, Cr, and As were analyzed. It shows that the average TSP concentration in Changsha, Zhuzhou and Xiangtan were (183 ± 73), (201± 84) and (190 ±66) μg/m3 respectively, and the average PM10 were (171 ± 82), (178 ± 65) and (179 ± 55) μg/m3 respectively. The lowest TSP and PM10 concentrations occurred at the background Shaping site of Changsha. The average ratio of p(PM10)/p(TSP) was 91.9%, ranging from 81.3% to 98.9%. Concerning heavy metals, in TSP samples, the concentration of Cr, As, Cd and Pb were 28.8-56.5, 18.1-76.3, 3.9-26.1 and 148.0-460.9 ng/m3, respectively, while in PMI0 samples, were 16.4--42.1, 15.5-67.9, 3.3-22.2 and 127.9-389.3 ng/m3, respectively. The enrichment factor of Cd was the highest, followed by Pb and As, while that of Cr was the lowest.展开更多
Laminar mixing in the stirred tank is widely encountered in chemical and biological industries.Isolated mixing regions(IMRs)usually exist when the fluid medium has high viscosity,which are not conducive to mixing.In t...Laminar mixing in the stirred tank is widely encountered in chemical and biological industries.Isolated mixing regions(IMRs)usually exist when the fluid medium has high viscosity,which are not conducive to mixing.In this work,the researches on IMRs,enhancement of laminar mixing and the phenomenon of particle clustering within IMRs are reviewed.For most studies,the aim is to destroy IMRs and improve the chaotic mixing.To this end,the mechanism of chaotic mixing and the structure of IMRs were well investigated.The methods developed to destroy IMRs include off-centered agitation,dynamic mixing protocol,special designs of impellers,baffles,etc.In addition,the methods to characterize the shape and size of IMRs as well as mixing effect by experiments and simulations are summarized.However,IMRs are not always nuisance,and it may be necessary in some situations.Finally,the present engineering applications are summarized,and the prospect of the future application is predicted.For example,particle clustering will form in the co-existing system of chaotic mixing and IMRs,which can be used for solid–liquid separation and recovery of particles from high viscosity fluid.展开更多
Given factors such as reduced land availability for onshore wind farms,wind resource enrichment levels,and costs,there is a growing trend of establishing wind farms in deserts,the Gobi,and other arid regions.Therefore...Given factors such as reduced land availability for onshore wind farms,wind resource enrichment levels,and costs,there is a growing trend of establishing wind farms in deserts,the Gobi,and other arid regions.Therefore,the relationship between sanddust weather environments and wind turbine operations has garnered significant attention.To investigate the impact of wind turbine wakes on sand-dust transportation,this study employs large eddy simulation to model flow fields,coupled with an actuator line model for simulating rotating blades and a multiphase particle in cell model for simulating sand particles.The research focuses on a horizontal axis wind turbine model and examines the motion and spatiotemporal distribution characteristics of four typical sizes of sand particles in the turbine wake.The findings reveal that sand particles of varying sizes exhibit a spiral settling pattern after traversing the rotating plane of wind turbine blades,influenced by blade shedding vortex and gravity.Sand particles tend to cluster in the peripheries of the vortex cores of low vorticity in the wind turbine wake.The rotation of wind turbines generates a wake vortex structure that causes a significant clustering of sand particles at the tip vortex.As the wake distance increases,the particles that cluster at the turbine's tip gradually spread outward to approximately twice the rotor diameter and then begin to mix with the incoming flow environment.Wind turbines have a noticeable impact on sand-dust transportation,hindering their movement to a significant extent.The average sand-blocking rate exhibits a trend of initially increasing and then decreasing as the wake distance increases.At its peak,the sand-blocking rate reaches an impressive 67.55%.The presence of wind turbines induces the advanced settling of sand particles,resulting in a“triangular”distribution of the deposition within the ground projection area of the wake.展开更多
Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this ph...Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this phenomenon is studied for suspension having particles with different densities by numerical simulations.The particle-fluid interactions are modelled using immersed boundary method and inter-particle collisions are modelled using discrete element method.In simulations,settling Reynolds number is always kept above 250 and the suspension solid volume fraction is nearly 0.1 percent.Two particle density ratios(i.e.density of heavy particles to lighter particles)equal to 4:1 and 2:1 and particles with same density are studied.For each density ratio,the percentage volume fraction of each particle density is nearly varied from 0.8 to 0.2.Settling characteristics such as microstructures of settling particle,average settling velocity and velocity fluctuations of settling particles are studied.Simulations show that for different density particles settling characteristics of suspension is largely dominated by heavy particles.At the end of paper,the underlying physics is explained for the anomalies observed in simulation.展开更多
基金Project(DUT15JJ(G)01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2009AA03Z525) supported by the National High-tech Research and Development Program of China
文摘A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.
文摘Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The fractal dimensions of granule distribution and corpuscle superficial area are quite conformed with those of measurement. Conclusion The texture parameters of engine particle cluster can be obtained precisely by use of fractal theory.
基金Partially supported by the National Natural Science Foundation of China (No.50376028) and jointly by NSFC and PetroChina(No.20490200).
文摘Two-dimensional unsteady cocurrent upward gas-solid flows in the vertical channel are simulated and the mechanisms of particles accumulation are analyzed according to the simulation results. The gaseous turbulent flow is simulated using the large eddy simulation (LES) method and the solid phase is treated using the Lagrangian approach, and the motion of the gas and particles are coupled. The formation of clusters and the accumulation of particles near the wall in dense gas-solid flows are demonstrated even if the particle-particle collisions were ignored. It is found that a cluster grows up by capturing the particles in the dilute phase due to its lower vertical velocity. By this way the small size clusters can evolve to large-scale clusters. Due to the interaction of gas and particles, the large-scale vortices appear in the channel and the boundary layer separates from the wall, which results in very high particle concentration in the near wall region and a very large-scale cluster formed near the separation point.
基金supported by the National Key R&D Program of China(grant No.2020YFA0714400).
文摘The complex physical properties of supercritical water(SCW)make the heat transfer characteristics of particles within a particle cluster complicated.The heat transfer characteristics of single particle within a particle cluster in SCW,influenced by surrounding particles,have not been effectively explored.The numerical simulations were conducted to investigate the heat transfer characteristics of particle clusters in SCW under different conditions.The results were compared and analyzed with those from constant property flow.It was found that Reynolds number(Re)and the void fraction of particle cluster have no special effects on the variation trends of Nusselt number(Nu)for the focused particle.However,the particle temperature had a significant effect on the variation trends of Nu.The effect of Re on the heat transfer rate exponent(η)of the focused particle can be divided into two zones:a significant effect zone and a non-significant effect zone.The effect of void fraction onηin the non-significant effect zone was minimal.Within the non-significant effect zone,ηdecreased with the increasing particle temperature.In the significant effect zone,the variation trends ofηbecame more complex.The fundamental reason for this series of phenomena is the changes in distribution of physical properties.A model forηwas developed for the non-significant effect zone.This model can filter out the effects of Re and certain particle cluster spatial configurations,and it demonstrates good predictive performance.
基金supported by the National Natural Science Foundation of China (708710157103100271171030)
文摘This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12075090 and 12005066)the Science and Technology Program of Guangzhou(Grant No.2019050001)+1 种基金the Natural Science Foundation of Guangdong Province,China(Grant No.2017A030313029)the Major Basic Research Project of Guangdong Province,China(Grant No.2017KZDXM024)。
文摘Collective motion of active particles with polar alignment is investigated on a sphere.We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion.In the model,we added a polar alignment strength,along with Gaussian curvature,affecting particles swarm motion.We find that when the force exceeds a certain limit,the order parameter will decrease with the increase of the force.Combined with our definition of order parameter and observation of the model,the reason is that particles begin to move side by side under the influence of polar forces.In addition,the effects of velocity,rotational diffusion coefficient,and packing fraction on particle swarm motion are discussed.It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles,while the velocity has little influence on the clustering motion of particles.
基金The authors thank the Dept.of Science&Tech.(Gol)for the funding through Swarnajayanti Fellowship DST/SJF/ETA-03/2014-15Dr.Sayan Pal acknowledges the Council of Scientific and Industrial Research(CSIR)for doctoral fellowship。
文摘Here we report experiments on particle cluster settling at high Reynolds number in quiescent liquid contained in a vessel.The particles were observed to spread at the vessel bottom surface in a near-circular annular shape after settling irrespective of the shape of the vessel cross-section and particle shape,size,and types.Effect of different parameters such as mass,type and aspect ratio of the particles,height,and viscosity of liquid was investigated on spreading behaviour.Formation of the hemispherical bottom cap of the cluster that bounces upon hitting the vessel bottom surface was found to be responsible for the final circular annular shape of the settled structure.Particle leakage from the cluster was seen in the form of a tail.In the liquid having viscosity beyond 100 cP,cluster breakage was observed that resulted in hindered settling and asymmetric shapes of finally settled particles.The observations are useful to understand the overall area over which settling and spreading of such clusters can be observed.
基金This work was supported by the National Natural Science Foundation of China(grant numbers 91534204,21622609,and 21506253)the Science Foundation of China University of Petroleum,Beijing(grant numbers 2462018BJC003 and 2462014YJRC018).
文摘Particle clustering is an important dynamic phenomenon in circulating-fluidized-bed(CFBs)systems,and has been suggested as a key contributing factor to the non-uniform hydrodynamics of CFBs.Studies show that particle clusters can be affected by solids flux,in terms of frequency,duration,and solids holdup.To understand the characteristics of particle clusters under high-solids-flux conditions,experimental and modeling studies in high-solids-flux gas-solids CFBs were reviewed and summarized.Optical and electrical measurements and imaging methods were used to monitor the particle-clustering phenomenon in CFBs.Particles were found to cluster in high-flux CFBs,and were characterized by a denser cluster-solids holdup and a shorter time fraction,which was different from the behavior in low-flux CFBs.Particle properties affected particle clustering in high-flux CFBs significantly.In modeling work,Eulerian-Eulerian and Eulerian-Lagrangian methods were used to study the particle-cluster characteristics.Good results can be obtained by using the Eulerian-Eulerian method to simulate the CFB system,especially the high-flux CFBs,and by considering the effects of particle clusters.The Eulerian-Lagrangian method is used to obtain detailed cluster characteristics.Because of limits in computing power,no obvious results exist to model particle clusters under high-solids-flux conditions.Because high-solids-flux conditions are used extensively in industrial applications,further experimental and numerical investigations on the clustering behavior in HF/DCFBs are required.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.11132005)the National Natural Science Foundation of China(Grant No.50876053)Opening Fund of State of Key Laboratory of Nonlinear Mechanics
文摘A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using Lagrangian trajectory method. The flow Reynolds number is 180 based on the friction velocity and half-width of the channel. The particle is lycopodium with St=0.93 which may well follow the fluid phase. The mean and fluctuating velocities of both two phases are obtained, which are in good agreement with previous data. The strongest accumulations of particles in low-speed streak structures are observed at y~=l 1.3. Moreover, once particles are captured in low-speed streaks, most of them will reside there for a long period. Particles clustered in low-speed streaks obtain smaller instantaneous wall-normal and spanwise velocities than those out of there, which induce a larger particle flux into low-speed streaks than that out of there. The study is important for understanding particle dispersion mechanisms in gas-particle turbulent channel flows.
基金support from the Ministry of Science and Technology of China(Grant No.2009CB724001)the National Natural Science Foundation of China(Grant No.60972087)+1 种基金the Natural Science Foundation of Beijing,China(Grant No.3112018)the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-03-044)
文摘The influence of particle size on the effective permittivity of a particle-gas mixture in the presence of particle clusters was studied using numerical analysis involving the three-dimensional finite element method. The effective permittivity of the mixture was obtained by calculating the electrostatic energy generated in the computation domain, Numerical results show that for fixed volume fraction of particles in the mixture, the effective permittivity of the mixture increases with decreasing particle size, Static experiments were carried out by using a differential capacitance sensor with parallel plates. The variation of the effective permittivity with particle size is shown by experimental data to agree with the numerical results. The methodology described and the results obtained in this paper may be used to help modify the measurement of particles volume fraction in the presence of particle clusters when a capacitance sensor is used.
基金supported by the National Department Public Benefit Research Foundation(No.201109005)the National Natural Science Foundation of China(No.41205093)
文摘To understand the pollution characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China, total suspended particulate (TSP) and PMI0 samples were collected in cities of Changsha, Zhuzhou and Xiangtan from December 2011 to January 2012, and heavy metals of Cd, Pb, Cr, and As were analyzed. It shows that the average TSP concentration in Changsha, Zhuzhou and Xiangtan were (183 ± 73), (201± 84) and (190 ±66) μg/m3 respectively, and the average PM10 were (171 ± 82), (178 ± 65) and (179 ± 55) μg/m3 respectively. The lowest TSP and PM10 concentrations occurred at the background Shaping site of Changsha. The average ratio of p(PM10)/p(TSP) was 91.9%, ranging from 81.3% to 98.9%. Concerning heavy metals, in TSP samples, the concentration of Cr, As, Cd and Pb were 28.8-56.5, 18.1-76.3, 3.9-26.1 and 148.0-460.9 ng/m3, respectively, while in PMI0 samples, were 16.4--42.1, 15.5-67.9, 3.3-22.2 and 127.9-389.3 ng/m3, respectively. The enrichment factor of Cd was the highest, followed by Pb and As, while that of Cr was the lowest.
基金supports from National Key Research and Develop-ment Program(2020YFA0906804)the National Natural Science Foundation of China(21776282,21978296 and 22078229)+4 种基金the NSFC Key Program(21938009)major project(91934301)the National Key R&D Program of China(2019YFC1905805)Chemistry and Chemical Engineering Guangdong Laboratory Shantou(1922006)Innovation Academy for Green Manufacture,Chinese Academy of Sciences(IAGM2020C06)。
文摘Laminar mixing in the stirred tank is widely encountered in chemical and biological industries.Isolated mixing regions(IMRs)usually exist when the fluid medium has high viscosity,which are not conducive to mixing.In this work,the researches on IMRs,enhancement of laminar mixing and the phenomenon of particle clustering within IMRs are reviewed.For most studies,the aim is to destroy IMRs and improve the chaotic mixing.To this end,the mechanism of chaotic mixing and the structure of IMRs were well investigated.The methods developed to destroy IMRs include off-centered agitation,dynamic mixing protocol,special designs of impellers,baffles,etc.In addition,the methods to characterize the shape and size of IMRs as well as mixing effect by experiments and simulations are summarized.However,IMRs are not always nuisance,and it may be necessary in some situations.Finally,the present engineering applications are summarized,and the prospect of the future application is predicted.For example,particle clustering will form in the co-existing system of chaotic mixing and IMRs,which can be used for solid–liquid separation and recovery of particles from high viscosity fluid.
基金supported by the National Key Research&Development Program of China(Grant Nos.2022YFB4202102,and 2022YFB4202104)the National Natural Science Foundation of China(Grant Nos.52166014,and 52276197)+1 种基金the Science Fund for Creative Research Groups of Gansu Province(Grant No.21JR7RA277)the Hongliu Outstanding Young Talents Program of Lanzhou University of Technology。
文摘Given factors such as reduced land availability for onshore wind farms,wind resource enrichment levels,and costs,there is a growing trend of establishing wind farms in deserts,the Gobi,and other arid regions.Therefore,the relationship between sanddust weather environments and wind turbine operations has garnered significant attention.To investigate the impact of wind turbine wakes on sand-dust transportation,this study employs large eddy simulation to model flow fields,coupled with an actuator line model for simulating rotating blades and a multiphase particle in cell model for simulating sand particles.The research focuses on a horizontal axis wind turbine model and examines the motion and spatiotemporal distribution characteristics of four typical sizes of sand particles in the turbine wake.The findings reveal that sand particles of varying sizes exhibit a spiral settling pattern after traversing the rotating plane of wind turbine blades,influenced by blade shedding vortex and gravity.Sand particles tend to cluster in the peripheries of the vortex cores of low vorticity in the wind turbine wake.The rotation of wind turbines generates a wake vortex structure that causes a significant clustering of sand particles at the tip vortex.As the wake distance increases,the particles that cluster at the turbine's tip gradually spread outward to approximately twice the rotor diameter and then begin to mix with the incoming flow environment.Wind turbines have a noticeable impact on sand-dust transportation,hindering their movement to a significant extent.The average sand-blocking rate exhibits a trend of initially increasing and then decreasing as the wake distance increases.At its peak,the sand-blocking rate reaches an impressive 67.55%.The presence of wind turbines induces the advanced settling of sand particles,resulting in a“triangular”distribution of the deposition within the ground projection area of the wake.
文摘Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this phenomenon is studied for suspension having particles with different densities by numerical simulations.The particle-fluid interactions are modelled using immersed boundary method and inter-particle collisions are modelled using discrete element method.In simulations,settling Reynolds number is always kept above 250 and the suspension solid volume fraction is nearly 0.1 percent.Two particle density ratios(i.e.density of heavy particles to lighter particles)equal to 4:1 and 2:1 and particles with same density are studied.For each density ratio,the percentage volume fraction of each particle density is nearly varied from 0.8 to 0.2.Settling characteristics such as microstructures of settling particle,average settling velocity and velocity fluctuations of settling particles are studied.Simulations show that for different density particles settling characteristics of suspension is largely dominated by heavy particles.At the end of paper,the underlying physics is explained for the anomalies observed in simulation.