基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用Focus...基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。展开更多
针对密度峰值聚类算法DPC(clustering by fast search and find of density peaks)时间复杂度高、准确度低的缺陷,提出了一种基于Ball-Tree优化的快速密度峰值聚类算法BT-DPC。算法利用第k近邻度量样本局部密度,通过构建Ball-Tree加速...针对密度峰值聚类算法DPC(clustering by fast search and find of density peaks)时间复杂度高、准确度低的缺陷,提出了一种基于Ball-Tree优化的快速密度峰值聚类算法BT-DPC。算法利用第k近邻度量样本局部密度,通过构建Ball-Tree加速密度ρ及距离δ的计算;在类簇分配阶段,结合k近邻思想设计统计学习分配策略,将边界点正确归类。通过在UCI数据集上的实验,将该算法与原密度峰值聚类算法及其改进算法进行了对比,实验结果表明,BT-DPC算法在降低时间复杂度的同时提高了聚类的准确度。展开更多
文摘基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。
文摘针对密度峰值聚类算法DPC(clustering by fast search and find of density peaks)时间复杂度高、准确度低的缺陷,提出了一种基于Ball-Tree优化的快速密度峰值聚类算法BT-DPC。算法利用第k近邻度量样本局部密度,通过构建Ball-Tree加速密度ρ及距离δ的计算;在类簇分配阶段,结合k近邻思想设计统计学习分配策略,将边界点正确归类。通过在UCI数据集上的实验,将该算法与原密度峰值聚类算法及其改进算法进行了对比,实验结果表明,BT-DPC算法在降低时间复杂度的同时提高了聚类的准确度。