In a sensor network with a large number of densely populated sensor nodes, a single target of interest may be detected by multiple sensor nodes simultaneously. Data collected from the sensor nodes are usually highly c...In a sensor network with a large number of densely populated sensor nodes, a single target of interest may be detected by multiple sensor nodes simultaneously. Data collected from the sensor nodes are usually highly correlated, and hence energy saving using in-network data fusion becomes possible. A traditional data fusion scheme starts with dividing the network into clusters, followed by electing a sensor node as cluster head in each cluster. A cluster head is responsible for collecting data from all its cluster members, performing data fusion on these data and transmitting the fused data to the base station. Assuming that a sensor node is only capable of handling a single node-to-node transmission at a time and each transmission takes T time-slots, a cluster head with n cluster members will take at least nT time-slots to collect data from all its cluster members. In this paper, a tree-based network structure and its formation algorithms are proposed. Simulation results show that the proposed network structure can greatly reduce the delay in data collection.展开更多
In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to a...In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.展开更多
Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ ...Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ from those needed when a population is not structured. In this paper, we compared two supervised machine learning techniques, that is artificial neural network (ANN) and logistic regression models for prediction of an underlying structure for phylogenetic trees. We carried out parameter tuning for the models to identify optimal models. We then performed 10-fold cross-validation on the optimal models for both logistic regression?and ANN. We also performed a non-supervised technique called clustering to identify the number of clusters that could be identified from simulated phylogenetic trees. The trees were from?both structured?and non-structured populations. Clustering and prediction using classification techniques were?done using tree statistics such as Colless, Sackin and cophenetic indices, among others. Results from 10-fold cross-validation revealed that both logistic regression and ANN models had comparable results, with both models having average accuracy rates of over 0.75. Most of the clustering indices used resulted in 2 or 3 as the optimal number of clusters.展开更多
Providing services on demand is a major contributing factor to drive the increasingly development of the software defined network. However, it should supply all the current popular applications before it really attain...Providing services on demand is a major contributing factor to drive the increasingly development of the software defined network. However, it should supply all the current popular applications before it really attains widespread development. Multiple Description Coding(MDC) video applications, as a popular application in the current network, should be reasonably supported in this novel network virtualization environment. In this paper, we address this issue to assign MDC video application into virtual networks with an efficient centralized algorithm(CAMDV). Since this problem is an NP-hard problem, we design an algorithm that can effectively balance the user satisfaction and network resource cost. Previous work just builds a global multicast tree for each description to connect all the destination nodes by breadth-first search strategy or shortest path tree algorithm. But those methods could not achieve an optimal balance or a high-level user satisfaction. By introducing the hierarchical clustering scheme, our algorithm decomposes the whole mapping procedure into multicast tree construction and multipath description distribution. A serial of simulation experiments show that our centralized algorithm could achieve a better performance in balancing the user satisfaction and average mapping cost in comparison with its rivals.展开更多
Aiming at the existing problems in Leach algorithm,which has short network survival time and high energy consumption,a new location-based clustering topology control algorithm is proposed.Based on Leach algorithm,impr...Aiming at the existing problems in Leach algorithm,which has short network survival time and high energy consumption,a new location-based clustering topology control algorithm is proposed.Based on Leach algorithm,improvements have been done.Firstly,when selecting cluster head,node degree,remaining energy,and the number of being cluster head,these three elements are taken into consideration.Secondly,by running the minimum spanning tree algorithm,the tree routing is constructed.Finally,selecting the next hop between clusters is done by MTE algorithm.Simulation results show that the presented control algorithm has not only a better adaptability in the large-scale networks,but also a bigger improvement in terms of some indicators of performance such as network lifetime and network energy consumption.展开更多
基金The Hong Kong Polytechnic University under internal Grant No. G-YF51.
文摘In a sensor network with a large number of densely populated sensor nodes, a single target of interest may be detected by multiple sensor nodes simultaneously. Data collected from the sensor nodes are usually highly correlated, and hence energy saving using in-network data fusion becomes possible. A traditional data fusion scheme starts with dividing the network into clusters, followed by electing a sensor node as cluster head in each cluster. A cluster head is responsible for collecting data from all its cluster members, performing data fusion on these data and transmitting the fused data to the base station. Assuming that a sensor node is only capable of handling a single node-to-node transmission at a time and each transmission takes T time-slots, a cluster head with n cluster members will take at least nT time-slots to collect data from all its cluster members. In this paper, a tree-based network structure and its formation algorithms are proposed. Simulation results show that the proposed network structure can greatly reduce the delay in data collection.
文摘In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.
文摘Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ from those needed when a population is not structured. In this paper, we compared two supervised machine learning techniques, that is artificial neural network (ANN) and logistic regression models for prediction of an underlying structure for phylogenetic trees. We carried out parameter tuning for the models to identify optimal models. We then performed 10-fold cross-validation on the optimal models for both logistic regression?and ANN. We also performed a non-supervised technique called clustering to identify the number of clusters that could be identified from simulated phylogenetic trees. The trees were from?both structured?and non-structured populations. Clustering and prediction using classification techniques were?done using tree statistics such as Colless, Sackin and cophenetic indices, among others. Results from 10-fold cross-validation revealed that both logistic regression and ANN models had comparable results, with both models having average accuracy rates of over 0.75. Most of the clustering indices used resulted in 2 or 3 as the optimal number of clusters.
基金supported by the National Basic Research Program of China (2012CB315903)the National Science and Technology Support Program (2014BAH24F01)+3 种基金the Program for Key Science and Technology Innovation Team of Zhejiang Province (2011R50010-21, 2013TD20)863 Program of China (2015AA016103)the National Natural Science Foundation of China (61379118)the Fundamental Research Funds for the Central Universities
文摘Providing services on demand is a major contributing factor to drive the increasingly development of the software defined network. However, it should supply all the current popular applications before it really attains widespread development. Multiple Description Coding(MDC) video applications, as a popular application in the current network, should be reasonably supported in this novel network virtualization environment. In this paper, we address this issue to assign MDC video application into virtual networks with an efficient centralized algorithm(CAMDV). Since this problem is an NP-hard problem, we design an algorithm that can effectively balance the user satisfaction and network resource cost. Previous work just builds a global multicast tree for each description to connect all the destination nodes by breadth-first search strategy or shortest path tree algorithm. But those methods could not achieve an optimal balance or a high-level user satisfaction. By introducing the hierarchical clustering scheme, our algorithm decomposes the whole mapping procedure into multicast tree construction and multipath description distribution. A serial of simulation experiments show that our centralized algorithm could achieve a better performance in balancing the user satisfaction and average mapping cost in comparison with its rivals.
基金Financial by program for Liaoning Outstanding Talents in University(LR2012007)
文摘Aiming at the existing problems in Leach algorithm,which has short network survival time and high energy consumption,a new location-based clustering topology control algorithm is proposed.Based on Leach algorithm,improvements have been done.Firstly,when selecting cluster head,node degree,remaining energy,and the number of being cluster head,these three elements are taken into consideration.Secondly,by running the minimum spanning tree algorithm,the tree routing is constructed.Finally,selecting the next hop between clusters is done by MTE algorithm.Simulation results show that the presented control algorithm has not only a better adaptability in the large-scale networks,but also a bigger improvement in terms of some indicators of performance such as network lifetime and network energy consumption.