The North China Plain is one of the main grain producing areas in China. However, overexploitation has long been unsustainable since the water supply is mainly from groundwater. Since 2014,the South-to-North Water Div...The North China Plain is one of the main grain producing areas in China. However, overexploitation has long been unsustainable since the water supply is mainly from groundwater. Since 2014,the South-to-North Water Diversion Project's central route has been charted to the integrated management of water supply and over-exploitation, which has alleviated the problem to a certain extent. Although the Ministry of Water Resources has made many efforts on groundwater recharge since 2018 most of which have been successful, the recharge has not yet been sufficiently focused on the repair of shallow groundwater depression zones. It still needs further optimization. This paper discusses this particular issue,proposes optimized recharge plan and provides the following recommendations:(1) Seven priority target areas are selected for groundwater recharge in alluvial and proluvial fans in the piedmont plain, and the storage capacity is estimated to be 181.00×10~8 m~3;(2) A recharge of 31.18×10~8 m~3/a is required by 2035 to achieve the repair target;(3) It is proposed to increase the recharge of Hutuo River, Dasha River and Tanghe River to 19.00×10~8 m~3/a and to rehabilitate Gaoliqing-Ningbailong Depression Zone;increase the recharge of Fuyang River, Zhanghe River and Anyang River to 7.05×10~8 m~3/a and rehabilitate Handan Feixiang-Guangping Depression Zone;increase the recharge of Luanhe River by 0.56×10~8 m~3/a and restore Tanghai Depression Zone and Luanan-Leting Depression Zone;moderately reduce the amount of water recharged to North Canal and Yongding River to prevent excessive rebound of groundwater;(4) Recharge through well is implemented on a pilot basis in areas of severe urban ground subsidence and coastal saltwater intrusion;(5) An early warning mechanism for groundwater quality risks in recharge areas is established to ensure the safety. The numerical groundwater flow model also proves reasonable groundwater level restoration in the depression zones by 2035.展开更多
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depr...The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.展开更多
It has been confirmed that the key source rocks of Qiongdongnan Basin are associated with the Yacheng Formation, which was deposited in a transitional marine-continental environment. Because the distribution and evolu...It has been confirmed that the key source rocks of Qiongdongnan Basin are associated with the Yacheng Formation, which was deposited in a transitional marine-continental environment. Because the distribution and evolution patterns of the source rocks in the major depressions are different, it is important to determine the most abundant hydrocarbon-generation depressions in terms of exploration effectiveness. Based on an analysis of organic matter characteristics of the source rocks, in combination with drilling data and seismic data, this paper establishes a model to evaluate the hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin. First of all, by using the method of seismic-facies model analysis, the distribution of sedimentary facies was determined. Then, the sedimentary facies were correlated with the organic facies, and the distribution of organic facies was predicted. Meanwhile, the thickness of source rocks for all the depressions was calculated on the basis of a quantitative analysis of seismic velocity and lithology. The relationship between mudstone porosity and vitrinite reflectance(Ro) was used to predict the maturity of source rocks. Second, using the parameters such as thickness and maturity of source rocks, the quantity and intensity of gas generation for Yacheng and Lingshui Formations were calculated. Finally, in combination with the identified hydrocarbon resources, the quantity and intensity of gas generation were used as a guide to establish an evaluation standard for hydrocarbon-generation depressions, which was optimized for the main depressions in the Central Depression Belt. It is proposed that Lingshui, Ledong, Baodao and Changchang Depressions are the most abundant hydrocarbon depressions, whilst Songnan and Beijiao Depressions are rich hydrocarbon depressions. Such an evaluation procedure is beneficial to the next stage of exploration in the deep-water area of Qiongdongnan Basin.展开更多
The frontal uplift of the Kuqa depression is an important oil and gas producing area. In this study, the distribution and origin of natural gas were discussed based on natural gas components and isotope data. The main...The frontal uplift of the Kuqa depression is an important oil and gas producing area. In this study, the distribution and origin of natural gas were discussed based on natural gas components and isotope data. The main components of natural gas were hydrocarbons with relatively high contents of C2+ component. Most gases were derived from terrestrial source rocks, and some came from marine rocks. The contents of non-hydrocarbon gases were high in the central part of the frontal uplift area and low in the two terminals. The distribution of oil composition was similar to that of natural gas, which was mainly controlled by the types of source rocks. Dry coefficient and maturity of natural gas in the frontal uplift were lower than those of gas in the Kelasu tectonic belt of the Kuqa depression, which was mainly affected by the difference of tectonic movements in both areas. In the frontal uplift, the traps were formed in the early stage and could capture the early formed oil and gas, and structural adjustment was slight in later stages, so the oil and gas could be effectively preserved. Multiperiodic oil and gas filling led to the complex distribution of natural gas.展开更多
BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial a...BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.展开更多
In view of the current situation and environmental fragility of karst depression in Guizhou,the study proposed measures to utilize and explore it so as to promote economic development of Guizhou depression.
Chronic pain often develops severe mood changes such as depression.However,how chronic pain leads to depression remains elusive and the mechanisms determining individuals’responses to depression are largely unexplore...Chronic pain often develops severe mood changes such as depression.However,how chronic pain leads to depression remains elusive and the mechanisms determining individuals’responses to depression are largely unexplored.Here we found that depression-like behaviors could only be observed in 67.9%of mice with chronic neuropathic pain,leaving 32.1%of mice with depression resilience.We determined that the spike discharges of the ventral tegmental area(VTA)-projecting lateral habenula(LHb)glutamatergic(Glu)neurons were sequentially increased in sham,resilient and susceptible mice,which consequently inhibited VTA dopaminergic(DA)neurons through a LHbGlu-VTAGABA-VTADA circuit.Furthermore,the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner.Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain.Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.展开更多
Paleo-oil reservoir is of great importance to understand hydrocarbon enrichment mechanism and hydrocarbon exploration potential,but is yet poorly investigated in Kuqa Depression.The occurrence of the paleo-oil reservo...Paleo-oil reservoir is of great importance to understand hydrocarbon enrichment mechanism and hydrocarbon exploration potential,but is yet poorly investigated in Kuqa Depression.The occurrence of the paleo-oil reservoir in Dabei area was proved by quantitative grain fluorescence(QGF)and fluid inclusion petrography.Development history of the paleo-oil reservoir was reconstructed through:(1)oil-source correlation;(2)time coupling of source rock maturation,porosity evolution and migration pathways.The impact of paleo-oil reservoir on tight-gas accumulation was consequently discussed.Results suggest that considerable oil was accumulated in the K_(1)bs reservoir with paleo oil-water contact in Dabei 2 Well and Dabei 201 Well at 5800 and 6040 m,respectively.Crude oil was primarily sourced from Triassic source rocks with Jurassic source rocks of secondary importance,which was at oil generation window(0.7%–1.1%Ro)during 9–6 and 7.5–5 Ma,respectively.The occurrence of K_(1)bs tight reservoir(porosity<12%)was about 25 Ma,while faults and associated fractures at Kelasue structural belt were developed approximately from 8 to 3.5 Ma.Therefore,the tight oil accumulation was formed during 8–5 Ma.The paleo-oil reservoir in Dabei 1 gas field was destroyed by the evaporation fractionation in later stage.展开更多
Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries ...Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries and particular structural assemblages. In order to understand the formation mechanism of these special phenomena, a rheological experiment on the structural scenery of the Tongling area is carried out. The result shows that the primary regular and uniform boundaries of the Tongling area becomes irregular because of the enclosing and confinement of surrounding geological units in the process of 'compression-shearing-rotation-drag'; simultaneously, two specific 'drag depressions' developed at two opposite corners of the block. The former and the later phenomena can be regarded as a typical regional-scale rheological effect and necessary outcome of intraplate deformation respectively.展开更多
The depth to detachment level is a critical factor affecting the quality of structural modeling in fold and thrust belts. There are several detachment levels developed in the Kuqa depression. Based on the excess-area ...The depth to detachment level is a critical factor affecting the quality of structural modeling in fold and thrust belts. There are several detachment levels developed in the Kuqa depression. Based on the excess-area diagram, this paper concerns mainly the calculation of the depth to detachment in the Kuqa depression. The result demonstrates that the detachment levels are situated in different strata in varying zones, such as the Paleogene Kugeliemu Formation, the Paleozoic and the crystalline basement. The calculated depth to detachment level is very helpful for testing whether a structural interpretation is reasonable and for defining the depth of deeper detachment levels which were not discerned in seismic profiles.展开更多
We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the c...We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the calculation of true depth to detachment. Using the data of Yu et al (2006) to fit linear regression lines, we obtain the depths to detachment of Kela-2, Misikantage anticline and Dongqiu-8 structures, 115.74km, 14.17km, and 75.48km below the reference level (Cretaceous bottom) respectively with the excess area intercept equal to zero. However, the calculation results of depth to detachment in Yu et al (2006) are based on excess area intercept unequal to zero.展开更多
This paper mainly replies to the discussion by Li et al (2009) on the calculation of the detachment depths in the Kuqa Depression. We think that viscous material flowing into or out of the cross section can affect t...This paper mainly replies to the discussion by Li et al (2009) on the calculation of the detachment depths in the Kuqa Depression. We think that viscous material flowing into or out of the cross section can affect the validity of the calculation method, yet the number of detachment levels does not bring any drawbacks to the calculation. In the Kuqa Depression, the salt flow influenced the structural deformation to some extent, and affected slightly the accuracy of the calculated depths of the true detachment levels. However, it does not mean that the calculation method loses effectiveness in the study area. Therefore, the calculation results are still relatively believable.展开更多
基金funded by Geological Joint Fund of the National Natural Science Foundation of China (U2244214)China Geological Survey Program (DD20190336, DD20221752, DD20230078)+1 种基金Chinese Academy of Geological Sciences Basic Research Fund Program (SK202118, SK202216)Hebei Provincial Innovation Capacity Enhancement Program for High-level Talent Team Building (225A4204D)。
文摘The North China Plain is one of the main grain producing areas in China. However, overexploitation has long been unsustainable since the water supply is mainly from groundwater. Since 2014,the South-to-North Water Diversion Project's central route has been charted to the integrated management of water supply and over-exploitation, which has alleviated the problem to a certain extent. Although the Ministry of Water Resources has made many efforts on groundwater recharge since 2018 most of which have been successful, the recharge has not yet been sufficiently focused on the repair of shallow groundwater depression zones. It still needs further optimization. This paper discusses this particular issue,proposes optimized recharge plan and provides the following recommendations:(1) Seven priority target areas are selected for groundwater recharge in alluvial and proluvial fans in the piedmont plain, and the storage capacity is estimated to be 181.00×10~8 m~3;(2) A recharge of 31.18×10~8 m~3/a is required by 2035 to achieve the repair target;(3) It is proposed to increase the recharge of Hutuo River, Dasha River and Tanghe River to 19.00×10~8 m~3/a and to rehabilitate Gaoliqing-Ningbailong Depression Zone;increase the recharge of Fuyang River, Zhanghe River and Anyang River to 7.05×10~8 m~3/a and rehabilitate Handan Feixiang-Guangping Depression Zone;increase the recharge of Luanhe River by 0.56×10~8 m~3/a and restore Tanghai Depression Zone and Luanan-Leting Depression Zone;moderately reduce the amount of water recharged to North Canal and Yongding River to prevent excessive rebound of groundwater;(4) Recharge through well is implemented on a pilot basis in areas of severe urban ground subsidence and coastal saltwater intrusion;(5) An early warning mechanism for groundwater quality risks in recharge areas is established to ensure the safety. The numerical groundwater flow model also proves reasonable groundwater level restoration in the depression zones by 2035.
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
基金Supported by the National Natural Science Foundation of China(41602129,41602164)China National Science and Technology Major Project(2016ZX05007003,2016ZX05006-005)
文摘The control effects of different occurrence faults on oil and gas accumulation and distribution in the outer slope area of oil and gas reservoirs were studied taking the south-central Wen’an slope of the Jizhong depression in the Bohai Bay Basin as an example.Based on 3D seismic data and the distribution of oil and water,the controlling differences between consequent fault and antithetic fault were analyzed and compared from the formation and evolution rule of faults and the formation mechanism of fault traps,including development positions of the consequent fault traps and antithetic fault traps,oil and gas distribution horizon adjusted by fault and formation period of fault traps.The differences between consequent faults and antithetic faults in controlling reservoirs have three main aspects:(1)Consequent fault traps and antithetic fault traps are in different positions,the consequent fault traps are at the segmented growing point in the hanging wall of"hard-linkage"faults,while the antithetic fault traps are developed in the position with the largest throw in the footwall because of tilting action;(2)The two kinds of faults result in different oil and gas distribution vertically,oil and gas adjusted by consequent faults is distributed in a single layer or multi-layers,while oil and gas adjusted by antithetic faults occur in single layers;(3)The two kinds of fault traps are formed in different periods,the consequent fault traps are formed at the time when the related faults enter the stage of"hard-linkage",while the antithetic fault traps are formed at the beginning of the fault active period.
基金The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No.2011ZX05025
文摘It has been confirmed that the key source rocks of Qiongdongnan Basin are associated with the Yacheng Formation, which was deposited in a transitional marine-continental environment. Because the distribution and evolution patterns of the source rocks in the major depressions are different, it is important to determine the most abundant hydrocarbon-generation depressions in terms of exploration effectiveness. Based on an analysis of organic matter characteristics of the source rocks, in combination with drilling data and seismic data, this paper establishes a model to evaluate the hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin. First of all, by using the method of seismic-facies model analysis, the distribution of sedimentary facies was determined. Then, the sedimentary facies were correlated with the organic facies, and the distribution of organic facies was predicted. Meanwhile, the thickness of source rocks for all the depressions was calculated on the basis of a quantitative analysis of seismic velocity and lithology. The relationship between mudstone porosity and vitrinite reflectance(Ro) was used to predict the maturity of source rocks. Second, using the parameters such as thickness and maturity of source rocks, the quantity and intensity of gas generation for Yacheng and Lingshui Formations were calculated. Finally, in combination with the identified hydrocarbon resources, the quantity and intensity of gas generation were used as a guide to establish an evaluation standard for hydrocarbon-generation depressions, which was optimized for the main depressions in the Central Depression Belt. It is proposed that Lingshui, Ledong, Baodao and Changchang Depressions are the most abundant hydrocarbon depressions, whilst Songnan and Beijiao Depressions are rich hydrocarbon depressions. Such an evaluation procedure is beneficial to the next stage of exploration in the deep-water area of Qiongdongnan Basin.
基金supported by the National Natural Science Foundation of China (Grant Nos.40602016 40773032)
文摘The frontal uplift of the Kuqa depression is an important oil and gas producing area. In this study, the distribution and origin of natural gas were discussed based on natural gas components and isotope data. The main components of natural gas were hydrocarbons with relatively high contents of C2+ component. Most gases were derived from terrestrial source rocks, and some came from marine rocks. The contents of non-hydrocarbon gases were high in the central part of the frontal uplift area and low in the two terminals. The distribution of oil composition was similar to that of natural gas, which was mainly controlled by the types of source rocks. Dry coefficient and maturity of natural gas in the frontal uplift were lower than those of gas in the Kelasu tectonic belt of the Kuqa depression, which was mainly affected by the difference of tectonic movements in both areas. In the frontal uplift, the traps were formed in the early stage and could capture the early formed oil and gas, and structural adjustment was slight in later stages, so the oil and gas could be effectively preserved. Multiperiodic oil and gas filling led to the complex distribution of natural gas.
文摘BACKGROUND Intracranial high-density areas(HDAs)have attracted considerable attention for predicting clinical outcomes;however,whether HDAs predict worse neurological function and mental health remains controversial and unclear,which requires further investigation.In this prospective study,96 patients with acute ischemic stroke(AIS)who accepted endovascular mechanical thrombectomy(EMT)were included.The enrolled patients underwent cranial computed tomography(CT)examination within 24 hours after EMT.Clinical data in terms of National Institutes of Health Stroke Scale(NIHSS),the 3-month modified Rankin Scale(mRS),self-rating depression scale(SDS),and self-rating anxiety scale(SAS)scores were collected and compared between patients with HDAs and non-HDAs and between patients with good and poor clinical prognosis.Compared to patients without HDAs,patients with HDAs presented severe neurological deficits(admission NIHSS score:18±3 vs 19±4),were more likely to have post-stroke disabilities(mRS<3:35%vs 62%),and suffered more severe depression(SDS score:58±16 vs 64±13)and anxiety disorder(SAS score:52±8 vs 59±10).Compared to patients with a good prognosis,patients with a poor prognosis presented severe neurological deficits(admission NIHSS score:17±4 vs 20±3),were more likely to have HDAs on CT images(64%vs 33%),and suffered more severe depression(SDS score:55±19 vs 65±11)and anxiety(SAS score:50±8 vs 58±12).Multivariate analysis revealed that HDAs were independent nega-tive prognostic factors.CONCLUSION In conclusion,HDAs on CT images predicted poor prognosis and severe depressive and anxiety symptoms in patients with AIS who underwent EMT.
基金Supported by Funds of Rocky Desertification Control Administration Center of Bijie District in Guizhou Province~~
文摘In view of the current situation and environmental fragility of karst depression in Guizhou,the study proposed measures to utilize and explore it so as to promote economic development of Guizhou depression.
基金This work was supported by the National Natural Science Foundation of China(32192410,32071000,81870866,81571074,82230037,81971226,81620108008,82130034)the Foundation for Distinguished Young Scholars of ShaanXi(2019JC-21,2021JC-33)+1 种基金Young Scholar Project of the First Affiliated Hospital of Nanchang University(YFYPY202109)the Boost Plan of Xijing Hospital(XJZT21J01).
文摘Chronic pain often develops severe mood changes such as depression.However,how chronic pain leads to depression remains elusive and the mechanisms determining individuals’responses to depression are largely unexplored.Here we found that depression-like behaviors could only be observed in 67.9%of mice with chronic neuropathic pain,leaving 32.1%of mice with depression resilience.We determined that the spike discharges of the ventral tegmental area(VTA)-projecting lateral habenula(LHb)glutamatergic(Glu)neurons were sequentially increased in sham,resilient and susceptible mice,which consequently inhibited VTA dopaminergic(DA)neurons through a LHbGlu-VTAGABA-VTADA circuit.Furthermore,the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner.Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain.Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.
基金supported by the China National Science and Technology Major Project(No.2016ZX05047-001-006).
文摘Paleo-oil reservoir is of great importance to understand hydrocarbon enrichment mechanism and hydrocarbon exploration potential,but is yet poorly investigated in Kuqa Depression.The occurrence of the paleo-oil reservoir in Dabei area was proved by quantitative grain fluorescence(QGF)and fluid inclusion petrography.Development history of the paleo-oil reservoir was reconstructed through:(1)oil-source correlation;(2)time coupling of source rock maturation,porosity evolution and migration pathways.The impact of paleo-oil reservoir on tight-gas accumulation was consequently discussed.Results suggest that considerable oil was accumulated in the K_(1)bs reservoir with paleo oil-water contact in Dabei 2 Well and Dabei 201 Well at 5800 and 6040 m,respectively.Crude oil was primarily sourced from Triassic source rocks with Jurassic source rocks of secondary importance,which was at oil generation window(0.7%–1.1%Ro)during 9–6 and 7.5–5 Ma,respectively.The occurrence of K_(1)bs tight reservoir(porosity<12%)was about 25 Ma,while faults and associated fractures at Kelasue structural belt were developed approximately from 8 to 3.5 Ma.Therefore,the tight oil accumulation was formed during 8–5 Ma.The paleo-oil reservoir in Dabei 1 gas field was destroyed by the evaporation fractionation in later stage.
文摘Almost all intraplate caprocks experienced strong deformation during the convergence of microplates, and then disintegrated into many secondary geologic units with the special characters, such as irregular boundaries and particular structural assemblages. In order to understand the formation mechanism of these special phenomena, a rheological experiment on the structural scenery of the Tongling area is carried out. The result shows that the primary regular and uniform boundaries of the Tongling area becomes irregular because of the enclosing and confinement of surrounding geological units in the process of 'compression-shearing-rotation-drag'; simultaneously, two specific 'drag depressions' developed at two opposite corners of the block. The former and the later phenomena can be regarded as a typical regional-scale rheological effect and necessary outcome of intraplate deformation respectively.
基金the National Natural Science Foundation of China(No.40472107,40172076)the Foundation of Key Laboratory of Education Ministry for Hydrocarbon Accumulation Mechanism(China University of Petroleum)(Grant No.2003-02)+1 种基金the National Major Fundamental Research and Development Project(2005CB422107,G1999043305)the Tarim 0ilfield Company Project(Grant No.41004050009).
文摘The depth to detachment level is a critical factor affecting the quality of structural modeling in fold and thrust belts. There are several detachment levels developed in the Kuqa depression. Based on the excess-area diagram, this paper concerns mainly the calculation of the depth to detachment in the Kuqa depression. The result demonstrates that the detachment levels are situated in different strata in varying zones, such as the Paleogene Kugeliemu Formation, the Paleozoic and the crystalline basement. The calculated depth to detachment level is very helpful for testing whether a structural interpretation is reasonable and for defining the depth of deeper detachment levels which were not discerned in seismic profiles.
文摘We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the calculation of true depth to detachment. Using the data of Yu et al (2006) to fit linear regression lines, we obtain the depths to detachment of Kela-2, Misikantage anticline and Dongqiu-8 structures, 115.74km, 14.17km, and 75.48km below the reference level (Cretaceous bottom) respectively with the excess area intercept equal to zero. However, the calculation results of depth to detachment in Yu et al (2006) are based on excess area intercept unequal to zero.
基金funded by the National Natural Science Foundation of China (Grant No.40802030)
文摘This paper mainly replies to the discussion by Li et al (2009) on the calculation of the detachment depths in the Kuqa Depression. We think that viscous material flowing into or out of the cross section can affect the validity of the calculation method, yet the number of detachment levels does not bring any drawbacks to the calculation. In the Kuqa Depression, the salt flow influenced the structural deformation to some extent, and affected slightly the accuracy of the calculated depths of the true detachment levels. However, it does not mean that the calculation method loses effectiveness in the study area. Therefore, the calculation results are still relatively believable.