Data mining is the powerful technique, which can be widely used for discovering the customers’ behaviors as well as customer’s preferences. As a result, it has been widely used in top level companies for evaluating ...Data mining is the powerful technique, which can be widely used for discovering the customers’ behaviors as well as customer’s preferences. As a result, it has been widely used in top level companies for evaluating their Customer Relationship Management (CRM) system today. In this study, a new K-means clustering method proposed to evaluate the cluster customers’ profitability in telecommunication industry in Sri Lanka. Furthermore, RFM model mainly used as an input variable for K-means clustering and distortion curve used to identify optimal number of initial clusters. Based on the results, telecommunication customers’ profitability in Sri Lanka mainly categorized into three levels.展开更多
The paper study improved K-means algorithm and establish indicators to classify customers according to RFM model. Experimental results show that, the new algorithm has good convergence and stability, it has better tha...The paper study improved K-means algorithm and establish indicators to classify customers according to RFM model. Experimental results show that, the new algorithm has good convergence and stability, it has better than single use of FKP algorithms for clustering. Finally the paper study the application of clustering in customer segmentation of mobile communication enterprise. It discusses the basic theory, customer segmentation methods and steps, the customer segmentation model based on consumption behavior psychology, and the segmentation model is successfully applied to the process of marketing decision support.展开更多
Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate...Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate the needs and desires of a large group of customers over varied utilities.The volume and volatility of the business makes it one of the prospectivefields for analytical study and data modeling.This is also why customer segmentation drives a key role in multiple retail business decisions such as marketing budgeting,customer targeting,customized offers,value proposition etc.The segmentation could be on various aspects such as demographics,historic behavior or preferences based on the use cases.In this paper,historic retail transactional data is used to segment the custo-mers using K-Means clustering and the results are utilized to arrive at a transition matrix which is used to predict the cluster movements over the time period using Markov Model algorithm.This helps in calculating the futuristic value a segment or a customer brings to the business.Strategic marketing designs and budgeting can be implemented using these results.The study is specifically useful for large scale marketing in domains such as e-commerce,insurance or retailers to segment,profile and measure the customer lifecycle value over a short period of time.展开更多
As a typical industrial Internet of things(IIOT)service,demand response(DR)is becoming a promising enabler for intelligent energy management in 6 G-enabled smart grid systems,to achieve quick response for supply-deman...As a typical industrial Internet of things(IIOT)service,demand response(DR)is becoming a promising enabler for intelligent energy management in 6 G-enabled smart grid systems,to achieve quick response for supply-demand mismatches.How-ever,existing literatures try to adjust customers’load profiles optimally,instead of electricity overhead,energy consumption patterns of residential appliances,customer satisfaction levels,and energy consumption habits.In this paper,a novel DR method is investigated by mixing the aforementioned factors,where the residential customer cluster is proposed to enhance the performance.Clustering approaches are leveraged to study the electricity consumption habits of various customers by extracting their features and characteristics from historical data.Based on the extracted information,the residential appliances can be scheduled effectively and flexibly.Moreover,we propose and study an efficient optimization framework to obtain the optimal scheduling solution by using clustering and deep learning methods.Extensive simulation experiments are conducted with real-world traces.Numerical results show that the proposed DR method and optimization framework outperform other baseline schemes in terms of the system overhead and peak-to-average ratio(PAR).The impact of various factors on the system utility is further analyzed,which provides useful insights on improving the efficiency of the DR strategy.With the achievement of efficient and intelligent energy management,the proposed method also promotes the realization of China’s carbon peaking and carbon neutrality goals.展开更多
Hospital marketing is becoming important for the survival and the prosperity of the health service. In addition, it indirectly acts as a formal feedback channel for the customer requirements, preferences, suggestions ...Hospital marketing is becoming important for the survival and the prosperity of the health service. In addition, it indirectly acts as a formal feedback channel for the customer requirements, preferences, suggestions and complaints. In this work we have undertaken a survey based marketing study for two main objectives: The first being to better understand the patient clusters through k-means clustering and the second to understand customer perception of the different known quality perspectives through factor rotated and unrotated analysis. All of the questionnaires were designed according to international studies. Based on general descriptive statistics, items classified with higher variance but important, are: clean environment, doctors and nurses capabilities, and specialized doctors. Items that are less important with low variance are: food type, lighting and insurance. Also, items classified as more important with low variance are: recommended, no mistakes, and the cost. Using factor analysis rotated and unrotated reduced the variables into five main variables described as: medical aspects, psychological aspects, cost aspects, hospital image and ease of access and procedures. Using k-means clustering, the customers can be clustered into four main clusters with two of them described as general patient with wide variety of interest, serious cases interested in specialized doctors and food, and very serious case with high stress on equipment, no mistakes.展开更多
The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of ...The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of the electricity demand by reacting against electricity prices. The aim of this research is to develop tools for helping customers and aggregators to join price and demand response programs, while helping them to hedge against the risk of short-term price volatility. In this way, the capacity of and hybrid methodology (Self-Organizing Maps and Statistical Ward's Linkage) to classify high electricity market prices is analysed. Besides, with the help of Non-Parametric Estimation, some price-patterns were found in the abovementioned clusters. The contained knowledge within these patterns supplies customer market-based information on which to base its energy use decisions. The interest for this participation of customers in markets is growing in developed countries to obtain a higher elasticity in demand. Results show the capability of this approach to improve data management and select coherent policies to accomplish cleared demand offers amongst different price scenarios in a more flexible way.展开更多
Almost Vietnamese big businesses often use outsourcing services to do marketing researches such as analysing and evaluating consumer intention and behaviour,customers’satisfaction,customers’loyalty,market share,mark...Almost Vietnamese big businesses often use outsourcing services to do marketing researches such as analysing and evaluating consumer intention and behaviour,customers’satisfaction,customers’loyalty,market share,market segmentation and some similar marketing studies.One of the most favourite marketing research business in Vietnam is ACNielsen and Vietnam big businesses usually plan and adjust marketing activities based on ACNielsen’s report.Belong to the limitation of budget,Vietnamese small and medium enterprises(SMEs)often do marketing researches by themselves.Among the marketing researches activities in SMEs,customer segmentation is conducted by tools such as Excel,Facebook analytics or only by simple design thinking approach to help save costs.However,these tools are no longer suitable for the age of data information explosion today.This article uses case analysing of the United Kingdom online retailer through clustering algorithm on R package.The result proves clustering method’s superiority in customer segmentation compared to the traditional method(SPSS,Excel,Facebook analytics,design thinking)which Vietnamese SMEs are using.More important,this article helps Vietnamese SMEs understand and apply clustering algorithm on R in customer segmenting on their given data set efficiently.On that basis,Vietnamese SMEs can plan marketing programs and drive their actions as contextualizing and/or personalizing their message to their customers suitably.展开更多
文摘Data mining is the powerful technique, which can be widely used for discovering the customers’ behaviors as well as customer’s preferences. As a result, it has been widely used in top level companies for evaluating their Customer Relationship Management (CRM) system today. In this study, a new K-means clustering method proposed to evaluate the cluster customers’ profitability in telecommunication industry in Sri Lanka. Furthermore, RFM model mainly used as an input variable for K-means clustering and distortion curve used to identify optimal number of initial clusters. Based on the results, telecommunication customers’ profitability in Sri Lanka mainly categorized into three levels.
文摘The paper study improved K-means algorithm and establish indicators to classify customers according to RFM model. Experimental results show that, the new algorithm has good convergence and stability, it has better than single use of FKP algorithms for clustering. Finally the paper study the application of clustering in customer segmentation of mobile communication enterprise. It discusses the basic theory, customer segmentation methods and steps, the customer segmentation model based on consumption behavior psychology, and the segmentation model is successfully applied to the process of marketing decision support.
文摘Retailing is a dynamic business domain where commodities and goods are sold in small quantities directly to the customers.It deals with the end user customers of a supply-chain network and therefore has to accommodate the needs and desires of a large group of customers over varied utilities.The volume and volatility of the business makes it one of the prospectivefields for analytical study and data modeling.This is also why customer segmentation drives a key role in multiple retail business decisions such as marketing budgeting,customer targeting,customized offers,value proposition etc.The segmentation could be on various aspects such as demographics,historic behavior or preferences based on the use cases.In this paper,historic retail transactional data is used to segment the custo-mers using K-Means clustering and the results are utilized to arrive at a transition matrix which is used to predict the cluster movements over the time period using Markov Model algorithm.This helps in calculating the futuristic value a segment or a customer brings to the business.Strategic marketing designs and budgeting can be implemented using these results.The study is specifically useful for large scale marketing in domains such as e-commerce,insurance or retailers to segment,profile and measure the customer lifecycle value over a short period of time.
基金supported by the National Natural Science Foundation of China(62171218)。
文摘As a typical industrial Internet of things(IIOT)service,demand response(DR)is becoming a promising enabler for intelligent energy management in 6 G-enabled smart grid systems,to achieve quick response for supply-demand mismatches.How-ever,existing literatures try to adjust customers’load profiles optimally,instead of electricity overhead,energy consumption patterns of residential appliances,customer satisfaction levels,and energy consumption habits.In this paper,a novel DR method is investigated by mixing the aforementioned factors,where the residential customer cluster is proposed to enhance the performance.Clustering approaches are leveraged to study the electricity consumption habits of various customers by extracting their features and characteristics from historical data.Based on the extracted information,the residential appliances can be scheduled effectively and flexibly.Moreover,we propose and study an efficient optimization framework to obtain the optimal scheduling solution by using clustering and deep learning methods.Extensive simulation experiments are conducted with real-world traces.Numerical results show that the proposed DR method and optimization framework outperform other baseline schemes in terms of the system overhead and peak-to-average ratio(PAR).The impact of various factors on the system utility is further analyzed,which provides useful insights on improving the efficiency of the DR strategy.With the achievement of efficient and intelligent energy management,the proposed method also promotes the realization of China’s carbon peaking and carbon neutrality goals.
文摘Hospital marketing is becoming important for the survival and the prosperity of the health service. In addition, it indirectly acts as a formal feedback channel for the customer requirements, preferences, suggestions and complaints. In this work we have undertaken a survey based marketing study for two main objectives: The first being to better understand the patient clusters through k-means clustering and the second to understand customer perception of the different known quality perspectives through factor rotated and unrotated analysis. All of the questionnaires were designed according to international studies. Based on general descriptive statistics, items classified with higher variance but important, are: clean environment, doctors and nurses capabilities, and specialized doctors. Items that are less important with low variance are: food type, lighting and insurance. Also, items classified as more important with low variance are: recommended, no mistakes, and the cost. Using factor analysis rotated and unrotated reduced the variables into five main variables described as: medical aspects, psychological aspects, cost aspects, hospital image and ease of access and procedures. Using k-means clustering, the customers can be clustered into four main clusters with two of them described as general patient with wide variety of interest, serious cases interested in specialized doctors and food, and very serious case with high stress on equipment, no mistakes.
文摘The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of the electricity demand by reacting against electricity prices. The aim of this research is to develop tools for helping customers and aggregators to join price and demand response programs, while helping them to hedge against the risk of short-term price volatility. In this way, the capacity of and hybrid methodology (Self-Organizing Maps and Statistical Ward's Linkage) to classify high electricity market prices is analysed. Besides, with the help of Non-Parametric Estimation, some price-patterns were found in the abovementioned clusters. The contained knowledge within these patterns supplies customer market-based information on which to base its energy use decisions. The interest for this participation of customers in markets is growing in developed countries to obtain a higher elasticity in demand. Results show the capability of this approach to improve data management and select coherent policies to accomplish cleared demand offers amongst different price scenarios in a more flexible way.
文摘Almost Vietnamese big businesses often use outsourcing services to do marketing researches such as analysing and evaluating consumer intention and behaviour,customers’satisfaction,customers’loyalty,market share,market segmentation and some similar marketing studies.One of the most favourite marketing research business in Vietnam is ACNielsen and Vietnam big businesses usually plan and adjust marketing activities based on ACNielsen’s report.Belong to the limitation of budget,Vietnamese small and medium enterprises(SMEs)often do marketing researches by themselves.Among the marketing researches activities in SMEs,customer segmentation is conducted by tools such as Excel,Facebook analytics or only by simple design thinking approach to help save costs.However,these tools are no longer suitable for the age of data information explosion today.This article uses case analysing of the United Kingdom online retailer through clustering algorithm on R package.The result proves clustering method’s superiority in customer segmentation compared to the traditional method(SPSS,Excel,Facebook analytics,design thinking)which Vietnamese SMEs are using.More important,this article helps Vietnamese SMEs understand and apply clustering algorithm on R in customer segmenting on their given data set efficiently.On that basis,Vietnamese SMEs can plan marketing programs and drive their actions as contextualizing and/or personalizing their message to their customers suitably.