期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
1
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 Short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
FUZZY ECCENTRICITY AND GROSS ERROR IDENTIFICATION 被引量:1
2
作者 YE Bing FEI Yetai LIAO Benqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期143-145,共3页
The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipol... The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipollance relation is built. The concept and calculate formula of fuzzy eccentricity are defined to deduce the evaluation rule and function ofgruss error, on the base of them, a fuzzy clustering method of separating and discriminating the gross error is found, utilized in the dynamic circular division measurement system, the method can identify and eliminate gross error in measured data, and reduce measured data dispersity. Experimental results indicate that the use of the method and model enables repetitive precision of the system to improve 80% higher than the foregoing system, to reach 3.5 s, and angle measurement error is less than 7 s. 展开更多
关键词 Fuzzy clustering Gross error model Fuzzy eccentricity Repetitive precision improvement
下载PDF
Robust multifocus deep neural network for progression prediction on patient trajectory data
3
作者 K.Arunkumar S.Vasundra 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第4期589-598,共10页
Purpose-Patient treatment trajectory data are used to predict the outcome of the treatment to particular disease that has been carried out in the research.In order to determine the evolving disease on the patient and ... Purpose-Patient treatment trajectory data are used to predict the outcome of the treatment to particular disease that has been carried out in the research.In order to determine the evolving disease on the patient and changes in the health due to treatment has not considered existing methodologies.Hence deep learning models to trajectory data mining can be employed to identify disease prediction with high accuracy and less computation cost.Design/methodology/approach-Multifocus deep neural network classifiers has been utilized to detect the novel disease class and comorbidity class to the changes in the genome pattern of the patient trajectory data can be identified on the layers of the architecture.Classifier is employed to learn extracted feature set with activation and weight function and then merged on many aspects to classify the undetermined sequence of diseases as a new variant.The performance of disease progression learning progress utilizes the precision of the constituent classifiers,which usually has larger generalization benefits than those optimized classifiers.Findings-Deep learning architecture uses weight function,bias function on input layers and max pooling.Outcome of the input layer has applied to hidden layer to generate the multifocus characteristics of the disease,and multifocus characterized disease is processed in activation function using ReLu function along hyper parameter tuning which produces the effective outcome in the output layer of a fully connected network.Experimental results have proved using cross validation that proposed model outperforms methodologies in terms of computation time and accuracy.Originality/value-Proposed evolving classifier represented as a robust architecture on using objective function to map the data sequence into a class distribution of the evolving disease class to the patient trajectory.Then,the generative output layer of the proposed model produces the progression outcome of the disease of the particular patient trajectory.The model tries to produce the accurate prognosis outcomes by employing data conditional probability function.The originality of the work defines 70%and comparisons of the previous methods the method of values are accurate and increased analysis of the predictions. 展开更多
关键词 Patient trajectory data Deep learning representatives Disease evolution Unstructured hierarchical data Cluster reconstruction error
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部